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Abstract

Statistical Modeling for Dark Energy and Associated Cosmological Constants

by

Tracy Holsclaw

Our endeavor has been to answer one of science’s important questions, mainly about the

nature of dark energy. We have worked alongside cosmologists to better understand our

Universe and in due course have developed some useful statistical methods for undertaking

analysis of derivative processes, model selection, and experimental design. There are no

direct measures available for the posited dark energy; its form must be inferred from other

data sources like supernova, cosmic microwave background radiation, or baryon acoustic

oscillation. The dark energy equation of state is a second derivative process embedded in a

non-linear transform when related to the observable data. An inverse method is required to

coherently model the dark energy equation of state and relate its fit back to the observed

data, which requires two integrations. In general, parametric forms have been used to model

the dark energy equation of state because of the complexity of the inverse problem. We show

the form of dark energy can be modeled with a non-parametric Gaussian process which can

be integrated by properties of the stochastic process. This results in a computationally effi-

cient algorithm for the integrations. This inverse statistical method of estimating functions

of derivatives with Gaussian processes is generalizable to many other applications. Addi-

tionally, we show the benefits of this modeling for the dark energy equation of state through

model comparison methods that can handle both parametric and non-parametric models.

Finally, we compare future data collection missions using the Gaussian process model in an

experimental design setting.
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Chapter 1

Introduction

1.1 What is in this thesis?

The Universe is expanding at an accelerating rate, but what is causing this phe-

nomenon? Some have posited the existence of a mysterious entity coined dark energy, yet

no one has thus far proposed a way of measuring or even proving that it exists. There is

a good possibility that it does exist, in which case we desire to make inference as to the

physical and mathematical nature of this inexplicable phenomenon. Specifically, we want

to make inference on the equation of state of this possible force, dark energy, in so much as

to determine its form and account for any historical changes in its nature.

There are several probing questions pushing the forefront of discovery in cosmology;

this is one of them. It requires new methods and statistical applications to answer this

question. In no way is the current cosmology straightforward or the equations simple to

analyze. In Chapter 1, we lay the groundwork of the current non-linear cosmology model

and how applied statistics is currently being used to address the questions about the dark

energy equation of state.

Currently, this unknown driver of our accelerating Universe, dark energy, can only
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be studied through its pressure-density relation by means of auxiliary observable data rela-

tions like the distance-redshift relation of supernovae. Cosmologists wonder if the equation

of state for dark energy (w(z)) could be as simple as an inverse relationship that has been

constant since the beginning of the Universe (mathematically does w(z) = −1?). In Chapter

2, we answer the important question: is w(z) = −1 or at least prepare a framework for this

question to be answered in the future as supernova data quality and quantity is improved.

Checking this hypothesis is no small feat, as the equation of state (EOS) for dark

energy is a second derivative process of the data and is embedded in a non-linear cosmology

equation relating distance and redshift. Scientists rightly address this as an inverse model,

this changes the derivatives into integrations over the redshift domain. w(z) can only be

fit by a one or two parameter model under this framework. Alternatively, we propose a

non-parametric Gaussian process (GP) model that allows a flexible fit of the equation of

state of dark energy. This GP model is shown to have nearly the same number of effective

parameters as the two parameter model, while obtaining tighter estimates of the equation

of state for dark energy (w(z)) and is more flexible in its fit than any other current model.

The statistical accomplishment is not only that we have attempted to fit a non-parametric

GP model to a very difficult cosmology application but that we have an innovative way of

solving an inverse problem exploiting the integrable properties of the GP. We show how the

GP can give a flexible fit with more constrained probability intervals (PIs) to help answer

if w(z) = −1.

Cosmologists want to know what data is needed to better constrain the current fit

for w(z) = −1. There may not be sufficient supernova data to support the framework for

answering such a simple question. In Chapter 3, we examine how baryon acoustic oscillation

(BAO) and cosmic microwave background (CMB) data can help constrain the equation of

state of dark energy (w(z)) and the matter density constant of the Universe (Ωm). Other

models have not been sufficiently capable of handling the high redshift CMB data in a

2



coherent manner or the newer BAO measures that require integrations at high redshift.

We believe that the GP model we present is coherent for both local and distant/historical

measurements that are needed to better constrain the equation of state of dark energy.

The form of w(z) can be further constrained by improving the quantity and quality

of the supernova data. While much of the work on retrieving better quality data is solely

in the hands of the astronomer, statistically we should be able to answer a foundational

question that bridges the theoretical cosmologist and observational astronomer about where

more data could be needed. Chapter 4 addresses this issue of where this data should be

collected on the z (redshift) axis to best constrain w(z) by comparing three possible telescope

missions. Uncertainty may be lessened by collecting expensive observations in these future

studies. This is not only important to the cosmologist and astronomer, but also to the

decision maker who must allocate resources for new telescopes or purchase time on existing

telescopes.

Our endeavor has been to answer one of science’s important questions, mainly

about the nature of dark energy. We have worked alongside cosmologists to better under-

stand our Universe and in the meantime have developed some useful statistical methods for

undertaking analysis of a derivative process (like the dark energy equation of state) where

no direct measurements are available. In the process of tackling the cosmological problem,

we have developed statistical methodology to estimate the derivative of a curve that is of

general interest. Our GP model requires the non-parametric fit of interest to be integrated,

which we show can be done by properties of the stochastic process. Here we develop and em-

ploy innovative statistical methods for fitting derivative processes to give a non-parametric

form for the dark energy equation of state and reduce uncertainty around that estimate.
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1.2 Cosmology and Dark Energy Developed

It has been assumed since the 1920’s that the Universe is expanding (de Sitter,

1934). Surprisingly in 1998, observational evidence started accumulating that favor a model

of the Universe that is expanding at an accelerating rate (Perlmutter et al., 1999). An

unknown entity termed dark energy (DE) is one possible explanation for this acceleration

(Riess et al., 1998). Currently, the nature of dark energy can be investigated by studying its

equation of state (EOS), that is the relationship of its pressure to its density. The hypoth-

esized dark energy is not directly detectable or measurable, so other means of investigation

are employed to learn about this possible mysterious influence.

To explore the theory of dark energy, observations are needed to verify the cur-

rent cosmological models and estimate the unknown parameters of interest. We investigate

some of these probes to gain a better understanding of the nature of this posited dark en-

ergy. These probes provide observations that have distance-redshift relations, which in turn

provides information about the cosmological parameters and the dark energy EOS. The

abundance of galaxy clusters, a measure of the background photons passing through hot

clusters called the integrated Sachs-Wolfe effect, weak lensing, type Ia supernovae (SNe),

cosmic microwave background radiation (CMB), baryon acoustic oscillation (BAO) mea-

sured from the distribution of galaxies, and assumptions on the structure of the Universe

can be used as measurable quantities to make inference as to the properties of dark energy

(Genovese et al., 2009). We specifically focus on the best of these observations for making

inference on the dark energy EOS.

1.2.1 Type-Ia Supernovae

One of the best measures of the expanding Universe is the abundant type-Ia su-

pernovae because of their property as standardizable candles (Perlmutter et al., 1997; Lei-
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bundgut, 2004; Riess et al., 1996b; Wood-Vasey et al., 2008). This property provides a

distance measure and can be directly related to the measurement of the supernova’s red-

shift (z) (Way et al., 2009). This distance-redshift relationship of supernovae and other

probes are key in determining the value of the dimensionless matter density parameter for

the Universe (Ωm) and the dark energy EOS (w(z)) (Genovese et al., 2009; Huterer and

Turner, 2001).

The peak luminosity (or luminosity distance DL) when a supernova explodes pro-

vides information on its distance (Way et al., 2009). Over the course of a few weeks of

observing a supernova explosion, the emitted light slowly grows to peak intensity and then

fades. The peak luminosity is of greatest interest as it bears the distance information of the

object; it can be obtained from fitting a light curve to the weeks of observations (Pskovskii,

1977). The brightness of the supernova is closely related to the shape of its light curve

(Leibundgut, 2001). Nearby supernova data are used to assist in estimating the color, light

curve shape, and peak luminosity in a complex light curve fitting process (Wood-Vasey

et al., 2007; Riess et al., 1996a). In this discussion, we assume that the previous work of

the astronomer and the light curve fitting protocol they have developed is correct and pro-

vides valid peak luminosity values (DL = 10
µ−25

5 ) and error bars for these measurements

(τ2). Most of the variability in distance measurements is assumed to be due to differences

in the supernovae at low and high redshift and needed color correcting for reddening from

intergalactic dust. This includes complex astronomy, filtering, multiple measurements per

supernovae, classification of the supernova as a type-Ia, and light curve fitting processes

(Guy et al., 2005).

Redshift (z) is the other measurable quantity of a supernova and it results from

power spectrum analysis (Dodelson, 2003). We are referring to the cosmological redshift of

an object, which is not quite the same as the typical redshift; this type of cosmological red-

shift encompasses the stretching of space between objects (Filippenko, 1997). The redshift

5



and distance measures are related through an equation which contains the unknown dark

energy EOS and some of the cosmological parameters (Way et al., 2009). We examine this

distance-redshift relation to shed light on the acceleration of the Universe and about the

mysterious dark energy.

1.2.2 Dark Energy Model of the Universe

To construct the posited dark energy model of the Universe, many cosmological

assumptions are needed and are based on the work of general relativity with the Friedmann-

Robertson-Walker metric and other assumptions of the Universe. Other foundational work

includes estimation of the Hubble parameter and the speed of light. We assume to know

the speed of light (c) precisely because it has been measured quite accurately. But we

need to estimate other unknown parameters like the Hubble parameter (H0), an offset

parameter due to uncertainty in the supernovae measurement process (M), and the matter

density of the Universe (Ωm) in the current mathematical representation of the Universe.

We add a radiation term to the cosmological model (Ωr(s)(1 + s)4) for completeness but it

is unnecessary when analyzing current low-redshift supernovae observations. Typically, we

assume that Ωr(z) is zero when working with just low redshift data like SNe. This term

only becomes important when high redshift data or equations are being analyzed like in the

case of CMB and BAO data.

Finally, we come to the distance-redshift relation for SNe data accounting for the

comoving distance (r(z)) to the object (Huterer and Turner, 1999; Genovese et al., 2009).

Equations (1.1) and (1.2) are non-linear equations that relate the distance and redshift for

SNe.

r(z) =
1

c(1 + z)
10

µ−25−M
5 (1.1)

r(z) =
1

H0

∫ z

0

(

Ωr(s)(1 + s)4 +Ωm(1 + s)3 + (1− Ωr(s)− Ωm)(1 + s)3e
−3

∫ s
0

−w(u)
1+u

du
)

−1/2

ds (1.2)

The dark energy EOS (w(z)), a second derivative process of the fit, is the function

of main interest. There are several other unknown parameters that appear in this distance-
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redshift equation: Ωm and H0. There are two quite different approaches to estimate the

unknown function w(z) and these unknown parameters. One approach is to fit equation

(1.2) directly to the SNe data then find one or both derivatives, r′ or r′′ respectively.

The data are discrete and noisy so it is impossible to differentiate directly without using

some sort of smoothing. The second derivative of such curve would be directly related to

w(z) through a the non-linear transform (Sahni and Starobinsky, 2006; Saini et al., 2000;

Weller and Albrecht, 2002). This approach is no longer favored because it loses information

through the differentiation mechanism. Additionally, the fit of the second derivative process

estimates low redshift values poorly and gives large uncertainty bands for high z values;

Weller and Albrecht (2002) shows these fits of w(z) in their Figure 6. We include a Figure

1.1 to show the result of fitting the SNe data directly with non-linear regression (log(µ) =

β0 + β1log(z) + β2(log(z))
2) and then differentiating to obtain w(z) for a simulated dataset

where the truth for w(z) is known to be a constant negative one (dashed red line). The

estimated fit for w(z) in this plot is poor, actually it does not fit the physics of w(z), as

seen in the behavior around z=0 and for z greater than one, as well as the PI bands being

quite wide.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
3

−
2

−
1

0
1

z

w
(z

)

Figure 1.1: z vs. w(z) for simulated SNe data with n=557 observations. Mean (dark blue),
68% PI (blue), 95% PI (light blue), and truth (red dashed line)

In comparison to using this differentiation approach, some authors now view this
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as an inverse problem and apriori assume a parametric form for w(z) (Huterer and Turner,

2001; Astier, 2000). For most parametric forms of w(z), the inner integral is analytic, the

outer integration can be done numerically, and the parameters can be evaluated in an Markov

chain Monte Carlo (MCMC) algorithm (Gamerman and Lopes, 2006). In the algorithm for

the inverse method, one assumes/guesses a form for w(z), not for the data; the proposed fit

of w(z) is integrated and transformed to check it against the data (Genovese et al., 2009).

This provides inference for all of the parameters of interest.

We exclusively view this as an inverse problem where we assume a form for w(z) and

use SNe data. The SNe data is in terms of z, µ, and τ , where µ = 5log10(c(1+ z)r(z))+ 25.

Let µi = α(zi)+ǫi where τi is approximately one standard deviation of uncertainty in µi and

σ2 is the estimated variance of the data. We have Normal distributed errors: ǫi ∼ N(0, τ2σ2)

or µi ∼ N(T (z), τ2σ2) where T (z) is given in equations (1.3) and (1.4).

T (z) = 25 +M − 5 log10(H0) + 5 log10

(

c(1 + z)

∫ z

0

G(s)ds

)

(1.3)

G(s) =
(

Ωr(s)(1 + s)4 +Ωm(1 + s)3 + (1− Ωr(s)− Ωm)(1 + s)3e−3
∫

s
0

−w(u)
1+u

du
)−1/2

(1.4)

Unfortunately, SNe data alone does not supply information about Hubble’s con-

stant (H0). Both H0 and M are unknown parameters but are indistinguishable from one

another. A new parameter ∆ is used to encompass the joint uncertainty of these two pa-

rameters. We fix the value of H0 to an estimate (H∗
0 ) and then allow the uncertainty of

that parameter to propagate into ∆. This leads to a new representation of the distance-

redshift transform seen in equation (1.5). The likelihood is set up as follows for the SNe

data: L ∝
(

1
σ

)n
e
− 1

2

∑

(

µi−T (z)

τiσ

)2

.

T (z) = 25 + ∆− 5log10(H
∗
0 ) + 5 log10

(

c(1 + z)

∫ z

0

G(s)ds

)

(1.5)

8



1.2.3 Bayesian Analysis and MCMC

We have shown that dark energy EOS (w(z)) can be estimated by using the

distance-redshift relationship of SNe data. The distance-redshift relation is a non-linear

transform that ultimately is embedded in a likelihood equation. At this point, we have a

choice on what type of statistical methodology best suits this problem. There is no simple

closed form solution to such a problem because of the non-linearity and complexity involved

in the likelihood; some type of numerical algorithm is necessary. Much of the cosmology

literature uses a Bayesian approach to this problem and open source code based on Markov

chain Monte Carlo (MCMC) algorithm is available for some of the simpler parametric mod-

els of w(z). The Bayesian approach also lends itself here because we have prior information

for Ωm and that type of prior information is not easily incorporated into other statistical

frameworks.

Auxiliary Variables Ωm, ∆, and σ2

A Bayesian approach assumes all unknown parameters to follow a distribution

(Gelman et al., 2004). We have several parameters of interest: Ωm, ∆, σ2, and any param-

eters that comprise w(z) depending on the model. Both ∆ and σ2 posterior full conditional

distributions can be sampled via an MCMC algorithm as Gibbs steps.

We found that Ωm and ∆ along with the parameters that comprise w(z) (when

w(z) has a parametric form) are correlated to one another. Figure 1.2 shows two-way plots

of unknown parameters for simulated data with w(z) = −1. The model being fit is w(z) = a

with unknown ∆ and Ωm. The three parameters are sampled in a single Metropolis-Hastings

step of the algorithm using a joint proposal. The multivariate Normal joint proposal requires

a covariance matrix to be tuned, which can require a few thousand initializing runs. This

type of joint proposal is necessary for stable uncorrelated Markov chains (see Appendix A.5

for a further discussion on MCMC issues).
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Figure 1.2: Two-way plots for Ωm, ∆, and the parameter in w(z) when w(z) = a

Because Ωm and ∆ are parameters and we consider this a Bayesian framework;

they both need priors. The prior for ∆ is a flat Uniform. Whereas, Ωm has an informative

prior: π(Ωm) ∼ N(0.27, 0.042) which is based on other data sources like BAO and CMB,

which are independent of SNe data (Komatsu et al., 2010). In Chapter 3, BAO and CMB

data are incorporated and then a flat Uniform prior is used over the entire range of possible

values: π(Ωm) ∼ U(0, 1).

We use a non-informative prior for σ2 and incorporate this into the Gibbs step:

π(σ2) ∝ σ−2. Because the error bars (τi) are accounting for the variation in the data, the

true σ2 should be approximately one. The conditional posterior distribution for σ2 is shown

in equation (1.6), where T (z) is the transform given in equation (1.3):

σ2|z,H0,Ωm,M,w0 ∼ IG
(

n

2
,
1

2

n
∑

i=1

(

µi − T (zi)
τi

)2
)

(1.6)

1.2.4 Simulated Supernova Datasets

To model the distance-redshift relationship of SNe Type Ia, we need data. We

could use real SNe data but simulated datasets have some benefits, the truth is known and

we can test the models and methods for accuracy. This simulated SNe data is similar to

what is expected to be obtained in the near future in the Joint Dark Energy Mission (JDEM)
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(Aldering, 2005). Each supernova observed results in a redshift measurement (z), a peak

luminosity used as a distance measure (µ) and its associated standard deviation (τ). The

standard error (τ) is set at a constant 0.13 for every observation. These datasets reflect the

expectation of collecting n = 2023 supernova observations. The true values of the parameters

are fixed when generating the data at: H0 = 72, ∆ = 0, and Ωm = 0.27. Therefore, when

using the simulated data we can either assume to know the auxiliary variables Ωm and ∆

and solely focus on modeling w(z) or we can let them vary.

We consider three simulated datasets to test the robustness of our analysis before

applying them to real data. Figure 1.3 graphs the three datasets; they are called µ1, µ2,

and µ3. The major difference in these datasets is the underlying form of w(z), which can

be seen in Figure 1.4. µ1 has the simple truth being w(z) = −1 (Figure 1.4(a)). µ2 has

a w(z) with slight curvature (Figure 1.4(b)) which should be fit well by one of the two-

parameter models we plan on fitting (Linder, 2003; Chevallier and Polarski, 2001). Figure

1.4(c) shows µ3, which is a more complex form of w(z) with a much faster rate of change

at mid-redshift values. This form is already excluded based on the real data but is a good

test case because it shows how the parametric forms can fail. The data values for z versus

µ seen in Figure 1.3 values are very similar for all three of these models. In fact, they are

nearly indistinguishable, which leads us to conclude that very different w(z) curves (non-

linearly transformed second derivative process of the data) produce nearly identical µ(z)

data curves.

1.3 Conventional Parametric Models for the Dark En-

ergy EOS

Many others are working to answer the question: is w(z) = −1? As background,

we begin by reproducing some of the most common parametric models for the dark energy

11
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Figure 1.3: Graphs of the distance-redshift relation for the SNe data: z vs. µB
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Figure 1.4: True w(z) curves

12



EOS (w(z)). Our analysis includes Bayesian estimation for three of the most popular ansatz

models for w(z): w(z) = a, w(z) = a+bz, and w(z) = a+b
(

1
1+z − 1

)

. These models include

the constant case, one linear and one non-linear parametric form for w(z). We use similar

priors for all of these models. We performed extensive prior sensitivity analysis that showed

that rather non-informative priors for the parameters in w(z) were appropriate. We use:

π(a) ∼ U(−25, 1) and π(b) ∼ U(−25, 25). These rather standard models for this problem

have been proposed and explored in previous work by Linder (2007) and many others.

Because we use simulated data (called datasets µ1, µ2, and µ3), the truth for the

models is known. The analysis for the coefficients, a and b and plots of w(z) can be easily

compared against the truth. For simulated dataset µ1, where w(z) = −1, the truth is simple

with the first w(z) = a model being the correct model. This means that for dataset µ1 the

underlying truth is a = −1 and b = 0 for these three models. Simulated dataset µ2, comes

from a curve similar to the third model with parameters a = −0.818 and b = 0.232. Dataset

µ3 is a more complex function of w(z) with quite a bit of curvature and does not correspond

to any of these parametric models. The w(z) = a model is not able to fit the data well but

should give something like an average of a = −0.619.

For each parametric model, we show results for these three datasets. First, we fix

Ωm and ∆ to the true values of the simulated data and solely explore the fit of w(z). Second,

we perform the analysis with Ωm and ∆ as unknown parameters that are estimated. Because

we are using a Bayesian model, this analysis results in posterior distributions for these

parameters; we display the 95% probability intervals (PIs) for all estimated parameters.

The simulations are all run 10,000 times with an MCMC algorithm and all acceptance

rates for the posteriors were around 20% and typically within 10-40%. The mixing of the

Metropolis algorithm is acceptable in all cases. We show a mean fit for w(z) as a solid line,

the 68% probability interval in dark blue, the 95% probability interval in light blue, and the

truth as a dashed line.
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1.3.1 Model 1 - w(z) = a

The first model of interest is the simplest; we assume that w(z) is constant and

unchanged from the beginning of the Universe. This model is the easiest to work with and

is best suited for traditional hypothesis testing as it results in a single value for w(z) with a

probability interval. However, the downside to this model is that it is incredibly rigid and

does not allow for w(z) to evolve through the history of the Universe and cannot indicate if

w(z) is curved. Many are interested in determining whether w(z) is a cosmological constant:

whether it be -1, -2/3, -1/3, or something else (Genovese et al., 2009). If it could be shown

with great certainty that w(z) is constant then this model would be sufficient, however

currently there is too much uncertainty. In this model, we have w(z) = a and this leads

to a simplified form for G(z) seen in equation (1.7). Table 1.1 and Figure 1.5 contain the

results of this analysis.

G(z) =
(

Ωr(1 + s)4 +Ωm(1 + s)3 + (1− Ωm − Ωr)(1 + s)3(1 + s)3a
)−1/2

(1.7)

Table 1.1: Model 1 - Posterior 95% PIs

Dataset a Ωm ∆ σ2

µ1 (-1.016,-0.990) 0.27 0 (0.92,1.03)
µ2 (-0.874,-0.851) 0.27 0 (0.92,1.03)
µ3 (-0.928,-0.903) 0.27 0 (0.93,1.05)
µ1 (-1.120,-0.923) (0.246,0.296) (-0.020, 0.015) (0.92,1.03)
µ2 (-0.940,-0.752) (0.224,0.290) (-0.020, 0.011) (0.92,1.03)
µ3 (-1.306,-1.069) (0.325,0.366) (-0.023, 0.011) (0.92,1.03)

Analysis

We do not gain information about Ωm from this analysis; as the prior and poste-

rior are nearly identical. Instead Ωm is included in the model to show the uncertainty it

adds to the estimation of w(z) (there are wider bands in the second row of graphs). Ad-

ditionally, when Ωm is added to the third dataset, w(z) is poorly estimated. Figure 1.5(f)
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Figure 1.5: Model 1 fits of w(z) for the three datasets µ1, µ2, and µ3. Mean (dark blue),
68% PI (blue), 95% PI (light blue), and truth (red dashed line)
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has an especially poor fit for both Ωm and w(z); the fit for w(z) does not touch the curve,

which is completely counter-intuitive. This chapter concludes with a section on parameter

interdependencies that should help explain this poor fit in the case when Ωm is not well

constrained.

We see in Table 1.1 and plots 1.5(a) and 1.5(d) that this model fits dataset µ1

quite well. This is expected as the truth for dataset µ1 is a constant. However, Model 1

(w(z) = a) does not fit datasets µ2 or µ3 well because the truth for w(z) in these datasets

is curved. Overall, Model 1 provides tight PI bands but it cannot make inference as to the

shape of w(z), as it inherently assumes a flat dark energy EOS.

1.3.2 Model 2 - w(z) = a+ bz

Model 2 is a simple linear model for w(z) with two coefficients and is explored in

Cooray and Huterer (1999); Maor et al. (2001); Weller and Albrecht (2001). This model

allows for a constant linear change over the history of the Universe for the dark energy EOS.

Therefore, the assumption here is more relaxed than in Model 1, as it picks up a type of

redshift dependency. We let w(z) = a+ bz which leads to a simplified version of G(z):

G(z) =
(

Ωr(1 + s)4 +Ωm(1 + s)3 + (1− Ωm − Ωr)(1 + s)3(a−b+1)e3bs
)−1/2

The general results can be seen in Table 1.2. Graphical fits for the dark energy

equation of state, w(z), are in Figure 1.6 with a mean line in black, 68% probability bands

in dark blue, and 95% probability bands in light blue. The true curve is displayed as a red

dashed line.

Analysis

Model 2 does an adequate job of fitting datasets µ1 and µ2; the flat dataset and

the slightly curved one. However, Model 2 does not capture the true w(z) for µ3, as this
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Table 1.2: Model 2 - Posterior 95% PIs

Dataset a b Ωm ∆ σ2

µ1 (-1.048,-0.952) (-0.207,0.177) 0.27 0 (0.91,1.03)
µ2 (-0.880,-0.787) (-0.298,0.069) 0.27 0 (0.92,1.03)
µ3 (-1.110,-1.016) (0.416,0.743) 0.27 0 (0.91,1.03)
µ1 (-1.114,-0.913) (-1.156,0.408) (0.205,0.335) (-0.022,0.017) (0.92,1.03)
µ2 (-0.941,-0.763) (-1.130,0.214) (0.217,0.348) (-0.020,0.016) (0.92,1.03)
µ3 (-1.278,-0.973) (-0.505,0.780) (0.223,0.377) (-0.024,0.012) (0.92,1.03)
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Figure 1.6: Model 2 fits of w(z) for the three datasets µ1, µ2, and µ3. Mean (dark blue),
68% PI (blue), 95% PI (light blue), and truth (red dashed line)
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dataset does not have a linear form. This is apparent in Figure 1.6; the dashed true line for

w(z) is outside the probability bands.

This linear model estimates the value for Ωm and ∆ fairly well in all cases, which

is an improvement from Model 1. When Ωm and ∆ are added to the model the probability

bands are much wider resulting in more uncertainty in the mean fit of w(z). According to

this analysis the parameters a and b are more correlated with each other when Ωm and ∆

are fixed. Overall, this simple linear model provides a basic way to examine the possibility

of a change of the dark energy EOS over the redshift range but it only allows for a rigid

linear change.

1.3.3 Model 3 - w(z) = a+ b( 1
1+z
− 1)

This two parameter model has been recommended by some of the cosmological

literature as a form of interest for w(z). Linder has been one of the main proponents of this

model as a robust form for an equation of state (EOS) with monotonic behavior (Linder,

2003). Linder advocates using the parameterization: w(z) = a∗ + b∗(1− 1
1+z ) to avoid a z

dependence issues (Linder, 2006). This two parameter model assumes a form of w(z) that is

somewhat more flexible than a linear model but has its limitations as to what forms of the

dark energy EOS it can model. Linder examines higher order polynomial fits in subsequent

literature and find they do not estimate w(z) correctly and oscillate heavily and must be

truncated for high z values (Linder, 2007). Here we let w(z) = a + b( 1
1+z − 1) = a + −bz

1+z

in the r(z) equation and do not include any higher order terms. For this model there is a

distance-redshift relation of the form:

G(z) =
(

Ωm(1 + s)3 + (1− Ωm)(1 + s)3(a−b+1)e
3bs
1+s

)−1/2

.

All of the unknown parameters were sampled jointly because they are correlated to one

another. The results of this analysis can be seen in Tables 1.3 and Figure 1.7.
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Table 1.3: Model 3 - Posterior 95% PIs

Dataset a b Ωm ∆ σ2

µ1 (-1.068,-0.935) (-0.358,0.393) 0.27 0 (0.91,1.03)
µ2 (-0.886,-0.766) (-0.122,0.534) 0.27 0 (0.92,1.03)
µ3 (-1.164,-1.049) (-1.363,-0.757) 0.27 0 (0.92,1.03)
µ1 (-1.108,-0.845) (-0.813,2.223) (0.203,0.337) (-0.019, 0.019) (0.92,1.03)
µ2 (-0.929,-0.707) (-0.591,1.728) (0.178,0.342) (-0.021, 0.017) (0.92,1.03)
µ3 (-1.333,-1.039) (-1.627,-0.187) (0.207,0.342) (-0.031, 0.006) (0.92,1.03)
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Figure 1.7: Model 3 fits of w(z) for the three datasets µ1, µ2, and µ3. Mean (dark blue),
68% PI (blue), 95% PI (light blue), and truth (red dashed line)
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Analysis

This model fits the slight curvature of simulated dataset µ2. This two parameter

model is capable of fitting datasets µ1 and µ2, however, it is not flexible enough to capture

the true w(z) in dataset µ3, as displayed in Figure 1.7. We can see the limitations of the

parametric assumption for the dark energy EOS inherent in this model. But this model does

an adequate job of estimating the unknown Ωm and ∆ parameters in almost all cases (Table

1.3). When these two parameters are unknown, the results have much wider probability

intervals as expected. Unfortunately, there is no way to extend this model in a meaningful

way to be more flexible. This seems to be the best choice of the parametric models currently

in the literature.

1.3.4 Discussion on Parameter Interdependencies

The parameters in the non-linear cosmology equation are correlated to one another:

specifically parameters of w(z) and Ωm. If we examine the w(z) = a model’s results for

simulated dataset µ3 in Figure 1.5(f), the fit of the model does not go through the truth

(dashed line) and the estimate of Ωm is not within the 95% PI bands. This fit for w(z) is

counter intuative; we expect a fit to be at the mean of the truth or at least touch the true

curve. The degeneracies seen in the estimates of Ωm and ∆ is a known issue. We found

that there is direct relation between the degeneracy seen in some of the fits of dataset µ3

because there are multiple w(z) solutions when Ωm is also estimated.

Basically, Ωm and w(z) produce a set of possible solutions when using SNe data

alone. In Figure 1.8(a), we plot a family of curves that are equivalent solution sets to

Ωm = 0.27 and w(z) = −1. The thick black curve is the truth. The other lines show curves

of w(z) for 0.1 step changes in Ωm, which ranges from 0.16 (top curve) to 0.28 (bottom

curve). We see that any curves below the true value of Ωm = 0.27 (larger Ωm values) leads
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to a degenerate w(z) curve that eventually asymptotically go to negative infinity. Figure

1.8(b) has the same values of Ωm but w(z) is set to be equivalent to the truth used in

simulated dataset µ2.
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Figure 1.8: w(z) curves for different Ωm values

Figure 1.5(f) shows results for Model 1 for the highly curved simulated dataset, µ3.

The fit of the model does not go through the truth (dashed line) and the estimate of Ωm is

also incorrect. There are multiple solutions that provide the same fit to the data with small

changes in Ωm. The plot shows that a flatter fit of w(z) corresponds to a higher value of

Ωm. The SNe data alone cannot distinguish between these multiple solutions and chooses

a flatter w(z) curve (because of the parametric assumption being made of flatness) with

higher Ωm value. We conclude that better prior information on Ωm is essential to retrieve

appropriate and coherent fits for w(z). For this reason, fits of w(z) are provided for both

variable and fixed Ωm in all of the models. We try to draw strength from other observations

like CMB and BAO through an informative priors for Ωm but that does not seem to be

adequate. In Chapter 3, we include CMB and BAO data directly to the analysis. These

probes have different redshift-distance relationships than the SNe data and can help resolve
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the multiple solutions problem of Ωm and w(z).

1.3.5 Remarks

Is the dark energy EOS equal to negative one (w(z) = −1)? Thus far we have

presented three of the most commonly used parametric models. Currently, we have several

issues in determining whether w(z) = −1. The underlying assumption for these three

models is that the EOS for dark energy w(z) follows one of the parametric forms. The one

parameter model (Model 1) does not allow for a flexible form of w(z) and the PI bands are

quite wide on the two parameter models (Models 2 and 3). Typically, we could amend these

models to relax the assumptions by adding additional terms. But adding additional terms

is not possible because the combination of the data quality and complexity of the non-linear

transform degrade the mean fit and PIs when anymore than two parameters are used to

model w(z) (Linder, 2007). The number of parameters that can be estimated is limited,

which poses a real problem when trying to ascertain the functional form of the dark energy

EOS.

This question could be formalized into a hypothesis test for the parametric models.

For Model 1 the null hypothesis is a = −1 and for Model 2 and 3 would be a = −1 and

b = 0. Most literature considers this a Bayesian problem with an informative prior for Ωm

and employs an MCMC algorithm to get parameter estimates. In the Bayesian framework,

hypothesis testing requires point mass priors at the null hypothesis values. We did this

analysis but because of the complexity of this problem the mixing on the parameter space

was poor and therefore the results are not displayed. The approach we find in the literature is

parametric model comparison using some type of Chi-squared test like AIC or BIC (Genovese

et al., 2009). In this method, a null hypothesis model (Model 0) with w(z) = −1 can be

compared to these other parametric models (we display the results in Chapter 2). Many

one and two parameter models can quickly be compared through this method to the null
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hypothesis. However, we find the standard AIC and BIC methods are unreliable for this

problem, as they tend to choose the model with the least number of parameters over the

correct model. The model selection criterion needs to be carefully chosen when doing model

verification on a second derivative process of the data where error measures are not available.

Thus we find the current methods of model fitting and model selection to be insufficient to

adequately address the question, is w(z) = −1.

Additionally, none of the models adequately capture the shape of dataset µ3. We

would like to have a method that allows relaxes the assumptions of the form inherent in

the two parameter models and allows for a more flexible fit of dark energy EOS. We would

like this method to shrink the uncertainty in the fit of w(z) and have tighter PI bands. We

are going to propose several non-parametric models and then propose model comparison

methods that can compare parametric and non-parametric models.
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Chapter 2

Non-parametric Models for w(z)

Back to the original question, what is the form of the dark energy EOS, could

w(z) = −1? In Chapter 1, we present the favored parametric models from the current

literature. In Chapter 2, we propose a non-parametric model that relaxes the assumptions

about the form of the dark energy EOS. The parametric methods start with a guess at

the form of w(z), typically via two parameter models, then implement and analyze them

all, and conclude with a model comparison method to choose the best one. The form

of w(z) is limited to at most a two parameter model and the current model comparison

techniques may not be providing accurate information as to which two parameter form is

best. Unfortunately, adding any higher order terms to the model for w(z) degrades the fit

and the uncertainty increases to a point where the fit is meaningless. Most non-parametric

methods rely on higher order terms or an expansion of basis functions (Genovese et al.,

2009). A non-parametric fit is of great benefit because it is flexible and can model any

continuous form of the dark energy EOS.

In this chapter, we employ two non-parametric models to do inference on w(z), we

call these Models 4 and 5. We continue to use the r(z) equation as our distance-redshift

relationship and the same simulated SNe dataset. In Model 4, we assume w(z) is a Gaussian
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process (GP). A GP is a stochastic process such that when sampled at any finite collection

of points, the values jointly follow a multivariate Normal distribution (Banerjee et al., 2004;

Rasmussen and Williams, 2006). Thus the process can be fully defined by its mean and

correlation functions. This model is advantageous in that it allows for a flexible fit to a

function, w(z), based on probability theory rather than assuming a parametric form. We

begin with an general example of modeling a derivative process of interest with a GP that

is not related to cosmology. This example is to explain the inverse method we develop and

compare it to other GP methods typically used in the statistical literature. Then we apply

our GP method to the cosmology problem in Model 4. Next we show Model 5, which is

an approximation to a GP comprised of a basis of damped Hermite polynomials (Steinberg

and Burstztyn, 2004). These models give a non-parametric fit and an approximation to a

non-parametric fit for w(z).

Other non-parametric modeling options for w(z) exist but we do not explore them

here. These include a piecewise constant model that requires binning of the SNe data

into categories based on their redshift values, called principal component analysis (PCA)

(Huterer and Starkman, 2003). It has some benefits in that it relies on the data to weight

parts of the model and can focus on analyzing specific redshift values. But it produces a

discrete step function estimate for w(z) which does not adhere to the physics of the problem

(Krauss et al., 2007; Crittenden and Pogosian, 2005; Simpson and Bridle, 2006). Other

approaches include using parametric forms of w(z) based on higher order polynomials, which

tend to break down (Genovese et al., 2009; Linder, 2007). The non-parametric methods we

present assume a continuous w(z) unlike many of the current non-parametric approaches

like PCA. And the GP method is flexible in its form without degrading the fit like higher

order polynomial models.
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2.1 Gaussian Process Models

For the non-parametric GP, w(z) is modeled with a collection w(z1), ..., w(zn),

for any set of z1, ..., zn, which follow a multivariate Gaussian distribution with mean, θ,

and powered exponential covariance function (Neal, 1997). Thus w(z) is considered a GP:

w(z) ∼ GP (θ, κ2K(z, z′)). A standard powered exponential covariance function suffices but

we re-parameterize the typical form to Σ(z, z′) = ρ|z−z′|α where ρ = e−λ and ρ ∈ [0, 1). This

form is used because ρ is a smoothness parameter in the model and a prior can be better

formed in this way. For the exponential correlation function, a ρ value near one means the

GP is rather smooth and a ρ value near zero would have a much rougher GP realization.

The underlying question of whether w(z) is constant and equal to negative one means we

want to know if ρ is approaching its limit as ρ← 1.

2.1.1 Integration of a GP

We are interested in w(z), a derivative process. Typically, this type of problem is

approached in the opposite manner where one fits the data directly with a GP and then

takes the derivative of the GP which results in a new GP (Banerjee et al., 2004). However,

we are most interested in the derivative process and not modeling the data; it has been

shown that it is best to model the equation of interest directly. Therefore, we view this

as an inverse problem, as we previously did with the parametric models. Inverse problems

can be complicated with identifiability issues because the likelihoods may not be written

in closed form (Higdon et al., 2003; Kaipio and Somersalo, 2004). We use the logic of the

current derivative GP method but instead invert it, showing that the integral of a GP is itself

a GP. This is a method similar to Bayes-Hermite quadrature described by O’Hagan (1991)

where the GP, w(z), is integrated based on the properties of the GP. However, O’Hagan

(1991) applies this method to integrating a continuous function; we adapt this method to
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integrate a stochastic process. We have a derivative process, w(u), we wish to model directly

by assuming it is a non-parametric GP with m sampled points (as seen in equation (2.1).

We need to evaluate y(s) =
∫ s

0
w(u)du and show that based on the properties of the GP,

y(s) is also a GP (as seen in equation (2.2)). Equation (2.3) shows the relationship between

the two GPs: w(u) and y(s) (for a more extensive proof see Appendix A.1).

w(u) ∼ GP (θ,Σ22 = κ2ρ|u−u′|α) (2.1)

y(s) ∼ GP
(

θs,Σ11 = κ2
∫ s

0

∫ s′

0

ρ|u−u′|αdu′du

)

(2.2)
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where Σ12 = κ2
∫ s′

0

ρ|u
′−s|αdu′ (2.3)

This results in a distribution for y(s)|w(u). We only need a single form for each y(s)

and not a whole distribution. O’Hagan (1991) shows that y(s) ≈ E(y(s)|w(u)) is sufficient

as an answer to the numerical integration when compared with other numerical integration

methods and the V (y(s)|w(u)) term is not taken into account. After some analysis, we

found that V (y(s)|w(u)) is sufficiently small (no more than noise) when we have more than

eight sampled points in w(u). We ran the algorithm with fifty to one hundred GP points

for w(u), which is more than a sufficient amount for V (y(s)|w(u)) to be close to zero.

In the same vein, Yaglom (1962) suggests that GPs be integrated by a basic ap-

proximation method, rectangle integration. A grid (ν) over the domain (z) has sampled GP

points (w(z)). For an exact solution, this is an infinite grid but in practice a finite grid is

used, where enough grid points supplies a good estimate of the integral /citepBan08. It can

be shown that a finite sum of the GP points that comprise w(u) gives a one-to-one relation-

ship with the GP points of y(s) which is the expectation seen in equations (2.4)-(2.6). We
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perform numerical integration for y(s) using equation (2.7).

y(s)|w(u) =
∞
∑

i=1

w(νi)(νi − νi−1) (2.4)

≈
m
∑

i=1

w(νi)(νi − νi−1) (2.5)

= E(y(s)|w(u)) (2.6)

= θs+Σ12Σ
−1
22 (w(u)− θ) (2.7)

The only computationally intensive calculation needed is Σ12 which requires a single integral

for every entry. This integration cannot always be done analytically because it depends on

the correlation function; we use the Chebyshev-Gauss quadrature method for numerical

integration, see Appendix A.2.

2.1.2 General Example

We begin with a generic example to compare this method to other GP methods

for finding derivative processes. We generate n = 100 equally spaced data points from the

curve f(z) = ln(1+ z) for z ∈ [0, 5] and add noise ǫ ∼ N(0, 0.52). Thus, the derivative curve

is f ′(z) = 1/(1 + z). We start by fitting a GP directly to the data and then differentiate

it to obtain an estimate of the derivative curve. This is the typical approach used for GP

modeling of a first derivative process (Neal, 1997). Banerjee et al. (2004) suggests using a

Matérn with smoothness parameter ν=3/2 (or ν ∈ (1, 2) if you want to fit the ν parameter),

parameterized as cov(w(z), w(z′)) = κ2(1 − log(ρ)|z − z′|)ρ|z−z′|, where κ > 0 is a scaling

parameter and ρ ∈ (0, 1) is a correlation parameter. This is one of the very few correlation

functions that has the appropriate properties to make differentiation of a GP possible.

It is once differentiable but it does not have the numerical issues like the overly smooth

Gaussian or the other Matérn correlation with a higher smoothness parameter. These

correlation functions would require a nugget (jitter) term because of numerical issues but
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this is theoretically incorrect to use when differentiating. We show that the differentiation

approach is an inferior method when compared to modeling the derivative process directly

and viewing this as an inverse problem. In this example, we focus on the power exponential

family. We choose this form because we want to compare the differentiation approach versus

the inverse approach. Then we move forward and apply the best method to the cosmology

problem. The Matérn (ν = 3/2) is too smooth for the inverse method in the cosmology

application. We use the power exponential family, α ∈ (0, 2] is typically equal to two

(Gaussian correlation) but this leads to numerical singularities in the matrix. One option is

to add a nugget term or jitter but the prediction of the derivative process is degraded (Stein,

1999). Instead, we incorporate the observational error into the likelihood equation in our

model, much like we did with the parametric models. Cholesky decomposition with pivoting

was considered to deal with the numerical instability of the covariance matrix. Ultimately,

we let α be slightly less than two; in most cases the approximation 1.9999 works well (we

refer to this as the pseudo-Gaussian correlation function).

In order to have differentiability for the first method, we can only use a Gaussian

correlation function from the exponential family. Our second fit corresponds to the deriva-

tive approach based on y(z) ∼ GP
(

0, κ2
∫ z

0

∫ z′

0
k(u, u′; (ρ, κ))dudu′

)

. In this case, we use

α = 1, so that the double integral for the correlation function for y(z) can be calculated

in closed form. The third fit is obtained using the inverse method we present in the pre-

vious section using E(w(u)|y(s)) as our transform. We show our approach with both the

exponential correlation function (α = 1) in the third method and the Gaussian correlation

function (α = 1.9999) in the fourth method. For the Gaussian correlation, we compute

the integrated correlation needed for the matrix Kyw numerically, using Gauss-Chebyshev

quadrature detailed in Appendix A.2.

In all methods, we use the same priors while generally avoiding non-informative

priors because of potential issues with improper posteriors. The parameter ρ is defined on
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the interval (0, 1). We desire smooth GP realizations that have higher correlation values,

therefore, we have an informative prior on ρ that favors values close to one: π(ρ) ∼ Be(6, 1).

σ2 is the variance of the observational error, a conjugate non-informative prior just like in

the parametric models: π(σ2) ∼ σ−2. κ2 controls the variance of the GP; we want an

informative prior with values away from zero, as this would produce numerical instability:

π(κ2) ∼ IG(4, 1). The last parameter to consider is θ; we assume it to be constant which

is equivalent to the conventional method of subtracting off the data mean of the derivative

process or a linear trend on the data scale. For this particular problem we have set θ = 0.41.

We use an MCMC algorithm based on a combination of Gibbs and Metropolis steps. To

ensure good convergence and mixing for the posterior chains we run the chains for 100,000

iterations.

The results for all four fits are presented in Figure 2.1. Panel 2.1(a) shows the

curve fitted by using a GP directly and 2.1(b) shows the resulting estimation of the curve

derivative. Even though the point-wise PIs cover the true values of the derivative for most of

the range, it is clear that the estimation is very wavy. Furthermore, the quality of the fit is

poor for values of z in the extremes of the interval. The results obtained for the estimation

of the derivative curve using the inverse problem approach are superior to the direct method

in all cases.

A comparison of the panels in the left column reveals that the method based on

the approximate likelihood produces intervals for the data fitting curve that are slightly

narrower than the exact method. This is not surprising, as the approximation ignores some

of the variability in the integration of the latent process w(z). On the other hand, the

panels on the right column indicate that the derivative curve is estimated quite accurately.

This is particularly in the case of the fit in panel 2.1(h), corresponding to the approximated

likelihood method with Gaussian correlation function. Since, the function of interest is

not the data curve but rather the derivative process, we find that our inverse method and
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Figure 2.1: Four estimation approaches for f ′(z). Left column: simulated data (circles); true
curve (dashed line); fitted curve (solid line). Right column: true derivative curve (solid line);
estimated derivative (dashed line). 65% and 95% probability interval bands (dark blue and light
blue respectively).
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integration technique for the GP seems to fit the best. We wish to apply this GP method

to the cosmology example.

2.2 Non-Parametric Models for the Dark Energy EOS

2.2.1 Model 4 - w(z) ∼ GP

We intend to apply the inverse GP method to the cosmology problem of fitting

the functional form of the unknown dark energy EOS, w(z). We use a standard powered

exponential covariance function: Σ(z, z′) = ρ|z−z′|α . The pseudo-Gaussian correlation and

the Matérn correlation (with smoothness parameter ν=1.5) both assume a very smooth

functional form for the dark energy EOS (w(z)). We find that the exponential correlation

(α = 1) leads to a much more flexible model that fit both flat and curved w(z) equations

and can capture the extreme curvature seen in dataset µ3. To ensure over-smoothing is not

happening a two step process is adopted. First, α = 1 model is fit and if the resulting w(z)

is relatively flat, we fit a model with α = 1.9999 without concern of over-smoothing.

We assume w(z) is a GP (as seen in equation (2.8)) with m sampled points. We

must evaluate y(s) =
∫ s

0
w(u)
1+u du based on the properties of the GP and obtain y(s), a non-

stationary GP (as seen in equation (2.9)). Equation (2.10) is the relationship between the

two GPs: w(u) and y(s) (see Appendix A.1 for more details).

w(u) ∼ GP (θ,Σ22 = κ2ρ|u−u′|α) (2.8)

y(s) ∼ GP
(

θ ln(1 + s),Σ11 = κ2
∫ s

0

∫ s′

0

ρ|u−u′|α

(1 + u)(1 + u′)
du′du

)

(2.9)
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(2.10)

We run an algorithm with fifty GP points for w(u), which should be more than a

sufficient amount for a good numerical approximation. y(s)|w(u) is a distribution and we
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perform numerical integration for it as follows:

y(s)|w(u) = E(y(s)|w(u)) = θ ln(1 + s) + Σ12Σ
−1
22 (w(u)− θ)

This handles just the inner integration step, now we need an effective outer inte-

gration procedure. The outer integration is done by a numerical trapezoid method (because

of the non-linear transform) and requires many grid points for an accurate numerical inte-

gration. This is actually n integrations, one for each data point. We draw more y(s) points

than are in original partition of w(u) by adding interpolated points, which gives enough

points for a more precise outer integral calculation. This method does not require a large

covariance matrix to be computed and inverted because the extra smoothing points are

being sampled only for the outer integration. Additionally, the inner integral and parti-

tioning/smoothing process are all done in one step, which is quite efficient. Σ11 is never

computed so the slowness of computing double integrals for each entry of the covariance

matrix is avoided. However, we need to compute Σ12 = κ2
∫ s′

0
ρ|u−s|α

1+u du which requires a

single integral for every entry, see Appendix A.2 for details on numerical integration.

There are other numerical issues when using a GP model embedded in a highly

non-linear transformation. Usually, when using GPs the posterior distributions result in

closed form representations that can be drawn with Gibbs steps. This inverse GP model

with m points must be sampled with a Metropolis algorithm at every iteration because

there is no closed form posterior distribution (but this was also true for the parametric

models). This step of the MCMC algorithm tends to have a high rejection level because we

propose m new sampled points in a joint step. To reduce the rejection level, the likelihood

is rewritten into an equivalent form that allows for smaller steps between iterations. This is

a more localized search algorithm used for GPs and is presented in Appendix A.3. The full

computational MCMC algorithm for the GP method is laid out in detail in Appendix A.4

and see Appendix A.5 for a further discussion on MCMC issues.
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There are four parameters that comprise the mean and covariance functions of

the GP: α, ρ, τ , and θ. α is either set to 1 or 1.9999, exponential or Gaussian correlation

respectively. The mean function of the GP has parameter θ. Allowing θ to be an unknown

variable did not produce stable posterior results in this analysis. We start by setting θ equal

to negative one and updated it in an iterative manner based on the posterior mean of the

GP after a few runs. This is very similar to subtracting off a data mean and assuming the

trend of interest to be a zero mean GP. The other parameters are ρ and κ in the correlation

function. ρ is considered the correlation length but does not carry a straight-forward physical

interpretation. We found that α actually controls most of the smoothness properties of the

GP, while ρ has much less influence than expected. κ controls some of the variability around

the mean (θ) but also is highly correlated to ρ. We are not concerned with the physical

meaning of ρ and κ as they are interdependent and both are estimated, not fixed.

All of the unknown parameters in the model need priors. We give ρ a more infor-

mative prior towards one (π(ρ) ∼ Beta(6, 1)) which assumes more smoothness in the fit of

w(z) because we are using the rougher exponential correlation function. A non-informative

prior on τ results in an unstable posterior, so τ is given an informative prior with as low

weight as possible: π(κ2) ∼ IG(6, 2). σ2 has a non-informative prior: π(σ2) ∝ σ−2, where

σ2 is the observational variance discussed in Chapter 1. σ2 is treated the same in both the

parametric and non-parametric models.

The two additional parameters, Ωm and ∆ are initially fixed, then in the second

set of simulations are considered as variable parameters just as in the parametric models.

The results of the GP model for w(z) are displayed in Figure 2.1. All sets were run 200,000

iterations. The mean value for the GP prior is set based on the posterior mean of an

initializing run of the GP. The mean is set at -1 for all dataset µ1 runs. Dataset µ2 has its

mean set at -0.94, and dataset µ3 has its mean set at -0.7. When Ωm and ∆ are variable

the mean for dataset µ2 is set at -0.87 and for dataset µ3, it was set at -1.
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Results

The best way to summarize the results of the GP model of w(z) is in figures,

which can also be compared with the plots of the fits of the parametric models shown in

Chapter 1. Figure 2.2 shows the GP model is capable of finding the true w(z) for all three

simulated datasets: µ1, µ2, and µ3. The roughness in the plots comes from the exponential

correlation function. All other correlation functions over-smooth the fit and do not allow

enough flexibility for fitting a true w(z) in simulated dataset µ3. If we find that the fit

for w(z) is not highly curved in the GP model with exponential correlation then we can fit

a GP with pseudo-Gaussian correlation without concern that this model will over-smooth.

Simulated datasets µ1 and µ2 can be fit with a GP with pseudo-Gaussian correlation function

but not dataset µ3.

Table 2.1: Model 4 - Posterior 95% PIs

Dataset Ωm ∆

µ1 (0.227,0.302) (-0.021, 0.016)
µ2 (0.212,0.309) (-0.022, 0.014)
µ3 (0.264,0.365) (-0.026, 0.014)

We have presented a non-parametric model that captures the curvature of w(z),

while not introducing larger probability intervals than the two-parameter models. Overall,

the GP fits well when Ωm is known. However, when Ωm is allowed to vary, we see that

the true Ωm is at the boundary of the estimated interval in datasets µ1 and µ3. This is

also seen in several of the parametric models discussed in Chapter 1 and explored in section

1.3.4 about parameter interdependencies. This is a known issue with multiple solutions

of the cosmological model; to abate this issue more information (possibly in the form of

a tighter prior from other data sources) is needed for Ωm. Even though, we have a novel

non-parametric approach it alone cannot answer if w(z) = −1 until more information is

available to better constrain Ωm ((Holsclaw et al., 2010b)). Chapter 3 is an investigation
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of additional data sources that can shrink the uncertainty associated with Ωm which would

lead to a more accurate prediction of the form of w(z). In Chapter 3, instead of having a

prior for Ωm based on other data sources, we introduce the data sources directly through

their redshift-distance relations to abate the issues of multiple solutions for Ωm and w(z).

2.2.2 Model 5 - w(z) is Modeled by a Damped Hermite Polynomial

Basis

Before moving on to multiple data sources, we investigate a model that approxi-

mates a GP with a basis of damped Hermite polynomials, this follows the work of Steinberg

and Burstztyn (2004). A damped polynomial basis applied to w(z) approximates a GP

model. Linder (2007) opposes fitting w(z) with higher order polynomials (beyond two terms)

because of their oscillating behavior and the need to truncate the fit for higher z values, as

well as, the fact that they can introduce bias in the fit. However, Genovese et al. (2009) use

a mixture of basis functions (which need not be orthonormal) to fit w(z). Their analysis

allows for three forms that include polynomial basis, scale factor polynomials, and piecewise

constant fits and can be extended to include B-splines, orthogonal polynomials and wavelet

analysis (Genovese et al., 2009). However, we believe after reproducing these results that

they may have only tried the first few orders of the basis function in their comparison and

had the same issues as Linder (2007) when using anything beyond two parameter models

for w(z). Using model selection criteria (BIC), they find that when using the polynomial

expansions the best model for w(z) is a constant model. We show that these results may

not be valid in section 2.3 as the BIC is overly conservative.

We found models with more than two parameters degrade; even when using the

damped Hermite polynomial expansion. We are only able to fit up to two polynomials in a

stable manner. We examine the damped polynomials here because they are a different form

of polynomials than has been previously used for this problem. We let W (u) = w(u)
1+u and
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we fit a series expansion of basis functions to W (u), shown in equation (2.11).

W (u) = γ(u) +

∞
∑

s=0

βsJs(u) (2.11)

where the mean of W (u) is γ(u) = −θ
1+u , θ is a constant, Js(u) = H∗

s (u)e
− mu2

2(1+m) are the

damped polynomials, andH∗
s (u) = Hs(u/

√

(2))/(2ss!)1/2 is a physicist Hermite polynomial.

The Hermite polynomials, H∗
s , are orthonormal with respect to a standard Normal, and have

the property:

E[H∗
s (W )H∗

t (W )] =

∫ ∞

−∞
exp−u2/2H∗

s (u)H
∗
t (u)du = δs,t

But the damped polynomials Js(u) that comprise the approximating summation are not

orthogonal.

Integrating the series expansion that approximates W (u) is not tractable. We

choose to useW (u) instead of w(u) because this allows the inner integration in the transform

to be performed using the properties of the Normal distribution, which is well approximated

by our statistical software and is quite computationally efficient. The integration method is

shown in equations (2.12) - (2.14).

∫ s

0

W (u)du =

∫ s

0

γ(u)du+ e−
mu2

2(1+m)
(

a0 + a1u+ a2u
2
)

du (2.12)

=

∫ s

0

−θ
1 + u

du+ a0

∫ s

0

e−
u2

2k2 ds+ a1

∫ s

0

ue−
u2

2k2 du+ a2

∫ s

0

u2e−
u2

2k2 du (2.13)

= −θ ln(1 + s) + a0
√
2πk2[N(s|0, k2)− 1/2] + a1{−k2e−s2/2k2

+ k2} (2.14)

+ a2{−k2e−s2/2k2

(s) + k2
√
2πk2[N(s|0, k2)− 1/2]}

The damped Hermite polynomial parameterization approximates a GP with Gaus-

sian correlation with range λ = m
2(1−m2) and variance σ2 = τ2(1−m2)−1/2 and 0 ≤ m ≤ 1.

Because the redshift axis (z) ranges between zero and two, the basis of Hermite poly-

nomials needs to be rescaled by a factor of two or three (J(2z) or J(3z)). The un-

scaled polynomials do not dampen until closer to z = 3 which is beyond the range of
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data. Both τ2 and m are unknown parameters that must be estimated, which have priors:

π(m) ∼ Beta(6, 1) and π(τ2) ∼ IG(25, 9). The prior on β also contains m, the damping

parameter, π(βs) ∼MVN(0, σ2ms). The observational variance term, σ2, in the likelihood

has a prior of: π(σ2) ∼ σ−2.

We write the series expansion up to the first two polynomials with β’s and show

that when the polynomials are truncated they can be expressed with new coefficients,a’s.

W (u) = γ(u) +

∞
∑

s=0

βsJs(u) (2.15)

= γ(u) + exp− mu2

2(1 +m)
[β0 −

1√
2
β2 + β1u+ (β2

1√
2
)u2...] (2.16)

= γ(u) + exp

(

− mu2

2(1 +m)

)

[

a0 + a1u+ a2u
2...
]

(2.17)

In Figure 2.3, we see the first six damped Hermite polynomials. Figure 2.3(a) is of the H∗

polynomials corresponding to the βs coefficients and Figure 2.3(b) shows the polynomial

basis corresponding to the as coefficients. We set m = 0.9 for these graphs and use a

rescaling factor of three.
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Figure 2.3: Damped Hermite Polynomials
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Figure 2.4: Model 5 fits of w(z) for the three datasets µ1, µ2, and µ3. Mean (dark blue),
68% PI (blue), 95% PI (light blue), and truth (red dashed line)

Table 2.2: Model 5 - Posterior 95% PIs

Dataset Ωm ∆

µ1 (0.218,0.322) (-0.022,0.014)
µ2 (0.216,0.332) (-0.022,0.012)
µ3 (0.225,0.368) (-0.026,0.010)
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Results

As with all basis expansions for this problem, only the first two terms of the damped

Hermite polynomial expansion are used before the analysis degrades. Thus we prefer the

actual GP model over this approximation method for the GP. We hoped this method would

be more computationally efficient than the actual GP model. But the GP model has been

creatively sped up in such a way that its performance is comparable from an efficiency

standpoint. This model approximates a GP with Gaussian correlation which does not fit

dataset µ3 well because it over smooths as expected. But Table 2.2 shows the true values

of Ωm and ∆ are in the PIs.

2.2.3 Conclusions

Parametric models typically result in more constrained parameter estimates than

those from non-parametric models. But parametric models require a form to be chosen

apriori; typically many forms can be fit and then compared through a model comparison

technique without knowing if any of the forms are correct. In this application, the param-

eterization of w(z) is limited to forms no higher than a first order polynomial fit, which

is very constraining. Genovese et al. (2009) work with a basis of functions, which they

claim cover the polynomial and piecewise constant cases. We replicated the polynomial

basis expansion (not shown in this document) and found it degraded quickly as more terms

were added. We have pursued some different non-parametric models in the hope of giving a

better alternative to the inflexible parametric approaches or non-parametric methods that

rely on binning. The inverse GP method we present provides narrower probability bands

than some of the frequently used two-parameter models.

When assuming w(z) is a GP, this gave preferable results to other models for

determining the form of the dark energy EOS. Not only is it continuous and flexible (because
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of our choice of correlation function) but it can model a large range of possible w(z) forms

and it has smaller PI bands than many of the two parameter models. But the GP model

is computationally more expensive. By using the distribution properties of the GP, we

can speed up the computations considerably. However, the uncertainty associated with the

parameter Ωm is problematic when determining the truth about w(z) (we want to work

to resolve this in Chapter 3). We also desire a method of model comparison that is more

reliable than what has been presented in the literature for this problem. Overall, we want

a way to quantify which model is best and if we can determine if w(z) = −1.

2.3 Hypothesis Testing and Model Comparison

2.3.1 Hypothesis Testing

When comparing parametric models there are standard methods of comparison and

hypothesis testing for a null hypothesis of w(z) = −1 (Genovese et al., 2009). But how do

we compare parametric models versus non-parametric models? We need something special

to do hypothesis testing and model comparison because some of the models are parametric

and others are non-parametric.

Here we view hypothesis testing as a part of model comparison. We set the null

hypothesis to be w = −1 and run a model (Model 0). Then we use model comparison

methods to compare this null hypothesis model to all the other models. Other methods of

Bayesian hypothesis testing using point mass priors and a reversible jump type algorithm did

not work well with this problem. Typically, these types of algorithms are for posteriors with

closed form; in this problem those are unavailable. The convergence of the posterior chains

in the algorithm are questionable and highly dependent upon the proposal distributions in

the algorithm. This is unfavorable and thus the results questionable (see Appendix A.5 for

a further discussion on MCMC issues).
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2.3.2 Model Comparison

For parametric model comparison (Genovese et al., 2009) uses a Chi-squared test

(Bayesian Information Criterion (BIC)) to choose between competing models and concludes

that the simple w = a model is the best (Schwarz, 1978; Szydlowski and Wlodzimierz, 2006).

We test the BIC and AIC on our simulated data and they tend to choose models with too

few parameters. This test is too cautious against over parameterizing and thus is unreliable.

We assume the BIC is failing because the test is meant to be used on the level of the data

(µ) and not on the embedded second derivative process of a non-linear function like w(z).

Residual analysis has the same issues as they are on the level of the data and meant to assess

a fit of the data and not the non-linearly transformed second derivative process. We have

found that if the wrong parametric model is chosen for w(z) the residuals may not show

any deviation in the residuals of the data. Currently, these are the methods being used to

compare multiple parametric possibilities for w(z). There is no way to know if a particular

parametric model is the correctly assumed form using these traditional methods.

We want a method of model comparison that provides coherent results for the

different forms of w(z). We tried several Bayesian model comparison that did not perform

well. One is Bayes factors (BF) which are difficult because of the complexity of the model

and require an approximation algorithm to work (March et al., 2010). Moreover they are

highly sensitive to the non-informative or lowly informative priors included in all of the

parametric models. Overall, BF are not known for working properly unless all priors are

somewhat informative; the results of the BF tests in this application are highly influenced

by the priors and therefore we avoid displaying the results because with different priors we

get different results of the model comparison. Also, it is not completely clear how to treat

the 50 finite GP points in the non-parametric model. We can choose to sample any number

of points for the GP; we use fifty grid points and they would need each be a parameter in the
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BF. Between the issues with the priors and the approximation algorithms the BF method

did not work well for this application.

The posterior predicted loss (PPL) criterion and the deviance information criterion

(DIC), both seemed to work better than any of the other methods (Banerjee et al., 2004;

Gelman et al., 2004; Gelfand and Ghosh, 1998). They also work for non-parametric models,

which is essential since we have presented a GP model. We tried both the quadratic and

linear loss for the PPL method (only the results for linear loss are presented in Table 2.3

because the two loss functions were quite similar). The DIC is defined as DIC = 2D(ψ)−

D(ψ), where ψ is the set of unknown parameters in the model, D(ψ) = −2 log(p(y|ψ)) and

D(ψ) is the average of each iterations D(ψ) value in the MCMC and D(ψ) is D(ψ) evaluated

at the average value of ψ from the iterations. Overall, we found the DIC to have some added

benefits like being able to estimate the number of effective parameters (pD = D(ψ)−D(ψ)

in the models.

In a parametric model, the number of parameters are counted in a straight-forward

manner but in the non-parametric GP, there is no count for the number of parameters (this is

the reason the AIC and BIC are not options, as they require the number of parameters). The

DIC produces an estimated effective number of parameters as part of the test (Spiegelhalter

et al., 2002). This value is of interest because some parameters are correlated and do not

effectively give a full count of one and more informative priors also shrink the effectiveness

of a parameter. We do not expect in parametric models that the full count of the number

of parameters equals the effective number of parameters because of the informative priors

and correlation among parameters.

We notice when the DIC is calculated for the simulated datasets, it chooses the

correct model often but the values of the DIC are quite close together. Once again, this could

be due to the fact, we are running the DIC on the second derivative process fit, w(z), and

not directly on a model fit to the data (µ). The DIC is the method that performs the best

44



on these simulated datasets. We perform each model comparison test on the null hypothesis

model (w(z) = −1) and all of the parametric and non-parametric models presented thus far

in Table 2.3. For a quick comparison, we note each model with correct form for the simulated

data with a star and then the model every test chooses with a star. The minimum value of

each test is the favored model.

Table 2.3: Model Comparison - Fixed ∆ and Ωm

Data Model BIC AIC p DIC pd PPL

µ1 0* -2922* -2928* 1 -2928.0* 1.00 427.6094
1 -2915 -2926 2 -2926.4 1.93 427.4711
2 -2907 -2924 3 -2924.3 2.96 427.5175
3 -2907 -2924 3 -2924.0 3.10 427.6386
4 n/a n/a n/a -2924.6 3.00 427.4007*
5 -2892 -2920 5 -2924.1 3.06 427.4983

µ2 0 -2483 -2489 1 -2489.2 1.00 470.5905
1 -2913* -2925* 2 -2924.9 1.97 427.4999
2 -2907 -2924 3 -2924.3 2.97 427.4614
3* -2907 -2924 3 -2924.2 3.05 427.4943
4* n/a n/a n/a -2924.2 2.97 427.4522*
5* -2891 -2920 5 -2927.5* -0.68 427.5024

µ3 0 -2713 -2719 1 -2719.1 1.01 448.0934
1 -2871 -2882 2 -2882.4 2.05 431.6029
2 -2906* -2923* 3 -2922.5 3.24 427.6933
3 -2904 -2921 3 -2921.5 2.99 427.8237
4* n/a n/a n/a -2922.8 3.72 427.4915*
5* -2890 -2919 5 -3036.0* -110.78 427.6208

2.3.3 Conclusions

The main concern in these results is that the AIC and BIC, the typical methods for

parametric model comparison in the literature, only once choose something other than a flat

model for w(z), when Ωm is known and w(z) is highly curved. If w(z) is only lightly curved,

BIC and AIC incorrectly choose a flat model. No model comparison methods perform well

when Ωm is unknown because there are multiple solutions issue. We need to address the

amount of uncertainty associated with Ωm before the results for the fit of w(z) are coherent

and we plan to do that by adding CMB and BAO data in Chapter 3.
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Table 2.4: Model Comparison - Variable ∆ and Ωm

Data Model BIC AIC p DIC pd PPL

µ1 0* -2907* -2924* 3 -2924.2 3.01 427.3903
1 -2899 -2922 4 -2922.6 3.88 427.3608*
2 -2892 -2920 5 -2926.0 -0.37 427.4834
3 -2892 -2920 5 -2925.6 0.45 427.4248
4 n/a n/a n/a -2924.2 2.32 427.4208
5 -2876 -2916 7 -2927.9* -1.73 427.4468

µ2 0 -2899 -2916 3 -2915.8 2.96 428.4060
1 -2899* -2922* 4 -2923.2 3.53 427.5772
2 -2892 -2920 5 -2925.5 0.62 427.3301
3* -2892 -2920 5 -2926.6* -0.3 427.5605
4* n/a n/a n/a -2922.4 4.01 427.4432
5* -2876 -2916 7 -2922.4 3.66 427.3113*

µ3 0 -2894 -2911 3 -2912.7 2.39 428.3618
1 -2899* -2922* 4 -2922.0 3.76 427.5172
2 -2891 -2920 5 -2930.2* -4.42 427.4444*
3 -2891 -2920 5 -2924.7 0.6 427.6364
4* n/a n/a n/a -2928.127 -2.14 427.4649
5* -2876 -2916 7 -2928.1 -2.36 427.5131

The DIC provides some useful information about the estimated effective number of

parameters. The effective number of parameters do not seem to be very accurate when Ωm

and ∆ are variable; we assume this is because of the interdependencies and multiple solutions

problem discussed in Section 1.3.4. Looking at Table 2.3 when Ωm is fixed brings some

interesting observations. The parametric models have about the same estimated effective

number of parameters as the counted number of parameters. The parameters tend to be

correlated and some have informative priors; each parameter may not add as much new

information to the model, so the DIC counts may be lower. The interesting thing is that

Model 4, the non-parametric GP model, has nearly the same number of effective parameters

as the two-parameter parametric forms of w(z).

Overall, the simulated data helps show that the GP is quite competitive with the

other parametric models. The effective number of parameters help to show how the GP can

be competitive. It offers the advantage of being flexible without over parameterizing the

model or increasing the uncertainty estimation of w(z). But the issues with the uncertainty
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associated Ωm and its interaction with w(z) need more work. To constrain the interaction

and Ωm we plan on doing a comprehensive study in Chapter 3 using the BAO and CMB

data directly instead of through a prior.

2.4 Real Datasets

Until now we have provided results based on simulated data to show the power of

the different models. The simulated data is what is expected to be collected in the near

future with n ≈ 2000 observations. The simulated data verifies the models as the truth is

known and also ensures we can computationally handle the larger future datasets. Currently,

the real data has fewer points with more noise than the simulated data. For the real data,

we show all models discussed thus far and do a full model comparison and hypothesis test

for w = −1 in this section.

Over the past few years, there has been a series of datasets available for the super-

novae Ia (SNe Ia). There are five datasets we examine: the Davis dataset (n=192) (Davis

et al., 2007; Riess et al., 2007; Wood-Vasey et al., 2007), Union dataset (n=307) (Kowalski

and Rubin, 2008), Constitution dataset (n=397) (Hicken et al., 2009), MLCS17 dataset

(n=372), and Union 2 (n=557) (Amanullah et al., 2010). Four of these sets are fit using

SALT light curve fitter and one uses the MLCS17 light curve fitter to get the distance mea-

sure, µ (Guy et al., 2005). The real data has larger error bars associated with µ and less data

points than in our simulated data which produces much larger PI bands for w(z). Figure

2.5 and 2.6 display the distance-redshift relationship and uncertainty measure associated

with µ for the real datasets.
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Figure 2.5: z vs. mu for the real SNe datasets
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Figure 2.6: Error measures associated with µ for the real SNe datasets
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2.4.1 Analysis and Results

We fit the null hypothesis model with w(z) = −1 (Model 0) and all three parametric

models from Chapter 1: w(z) = a, w(z) = a+ bz, and w(z) = a+ b( 1
1+z − 1) (Models 1-3).

Three non-parametric models from Chapter 2 are also fit; two GP models (Models 4e and

4g) and one damped Hermite basis expansion model (Model 5). The GP was initially run

with an exponential correlation function (Model 4e); the results were mostly flat with some

slight curvature, as seen in Figure 2.10. Because of these rather flat results, we can use an

approximately Gaussian correlation function (α = 1.9999) as the second GP model (Model

4g) without concern of over-smoothing.

In this analysis of real data, Ωm and ∆ cannot ever be fixed parameters because

unlike the simulated data, we do not know the truth. We give them the same priors as

we did in the simulated data. H0 is set to 70 for the two Union datasets and is 65 for the

other three. ∆ is an offset parameter which incorporates the uncertainty associated with

H0. The results of the analysis for all the models is found in Table 2.5 and 2.6 and Figure

2.7, 2.8, 2.9, 2.10, 2.11, and 2.12. The results of the non-parametric GP model has also

been published in Holsclaw et al. (2010a).
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Figure 2.7: Model 1 fits for the real SNe datasets
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Table 2.5: All Models - 95% Posterior PIs for Real SNe Data

Model Data a b Ωm0 ∆ σ2

0 Davis n/a n/a (0.22,0.33) (-0.07,0.03) (0.85,1.27)
Union n/a n/a (0.24,0.33) (-0.04,0.03) (0.88,1.22)
Const. n/a n/a (0.24,0.33) (-0.04,0.02) (1.03,1.36)
MLCS17 n/a n/a (0.27,0.35) (-0.03,0.02) (0.94,1.26)
Union2 n/a n/a (0.23,0.31) (-0.03,0.02) (0.87,1.10)

1 Davis (-1.40,-0.80) n/a (0.21,0.36) (-0.09,0.04) (0.86,1.28)
Union (-1.39,-0.81) n/a (0.21,0.37) (-0.05,0.04) (0.89,1.22)
Const. (-1.22,-0.79) n/a (0.20,0.35) (-0.04,0.03) (1.04,1.37)
MLCS17 (-1.10,-0.69) n/a (0.19,0.35) (-0.03,0.03) (0.95,1.26)
Union2 (-1.28,-0.83) n/a (0.21,0.35) (-0.03,0.02) (0.87,1.11)

2 Davis (-1.71,-0.55) (-3.33,2.12) (0.21,0.37) (-0.10,0.04) (0.85,1.28)
Union (-1.62,-0.76) (-2.30,2.34) (0.21,0.38) (-0.07,0.03) (0.88,1.21)
Const. (-1.31,-0.42) (-4.78,1.37) (0.20,0.39) (-0.04,0.04) (1.03,1.37)
MLCS17 (-1.20,-0.36) (-3.43,1.22) (0.20,0.37) (-0.03,0.04) (0.94,1.26)
Union2 (-1.30,-0.72) (-2.68,1.08) (0.21,0.37) (-0.04,0.03) (0.88,1.10)

3 Davis (-1.76,-0.48) (-3.53,4.71) (0.21,0.37) (-0.10,0.04) (0.86,1.28)
Union (-1.73,-0.71) (-3.71,3.19) (0.21,0.38) (-0.08,0.03) (0.88,1.21)
Const. (-1.29,-0.05) (-2.04,9.51) (0.22,0.41) (-0.04,0.05) (1.03,1.36)
MLCS17 (-1.25,-0.34) (-1.98,4.19) (0.21,0.36) (-0.03,0.04) (0.94,1.26)
Union2 (-1.35,-0.65) (-1.56,4.36) (0.21,0.38) (-0.03,0.03) (0.87,1.11)

4e Davis n/a n/a (0.21,0.35) (-0.09,0.03) (0.85,1.27)
Union n/a n/a (0.22,0.36) (-0.06,0.04) 0.88,1.21)
Const. n/a n/a (0.20,0.35) (-0.04,0.03) (1.03,1.36)
MLCS17 n/a n/a (0.20,0.35) (-0.03,0.03) (0.94,1.26)
Union2 n/a n/a (0.21,0.35) (-0.03,0.02) (0.88,1.11)

4g Davis n/a n/a (0.21,0.35) (-0.08,0.04) (0.85,1.28)
Union n/a n/a (0.21,0.36) (-0.05,0.04) (0.88,1.21)
Const. n/a n/a (0.21,0.35) (-0.04,0.03) (1.03,1.37)
MLCS17 n/a n/a (0.20,0.35) (-0.03,0.03) (0.94,1.26)
Union2 n/a n/a (0.21,0.34) (-0.03,0.02) (0.87,1.11)

5 Davis (-0.43,0.27) (-0.71,0.61) (0.21,0.36) (-0.09,0.04) (0.85,1.27)
Union (-0.45,0.18) (-0.46,0.78) (0.21,0.36) (-0.06,0.03) (0.88,1.21)
Const. (-0.26,0.28) (-0.77,0.50) (0.21,0.36) (-0.04,0.03) (1.03,1.36)
MLCS17 (-0.17,0.39) (-0.71,0.45) (0.20,0.36) (-0.03,0.03) (0.94,1.26)
Union2 (-0.28,0.19) (-0.65,0.43) (0.20,0.36) (-0.03,0.03) (0.87,1.11)
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Table 2.6: Model Comparison for the Real Data

Data Model BIC AIC p DIC pd PPL

Davis 0 -11.5* -21.3* 3 -21.371* 2.95 60.198
1 -6.5 -19.5 4 -21.269 3.00 59.899
2 -1.3 -17.6 5 -19.987 3.52 59.795*
3 -1.2 -17.5 5 -19.897 3.61 59.876
4e n/a n/a n/a -21.234 3.01 59.967
4g n/a n/a n/a -21.332 2.95 60.011
5 14.4 -11.6 8 -21.001 3.06 59.919

Union 0 31.0* 19.8* 3 19.973 3.04 128.092
1 35.6 20.6 4 19.666 2.90 128.006
2 41.2 22.5 5 20.182 3.52 127.710*
3 41.3 22.7 5 20.196 3.46 127.954
4e n/a n/a n/a 19.687 3.01 128.008
4g n/a n/a n/a 19.615* 2.97 127.920
5 58.4 28.5 8 20.113 3.61 127.892

Const. 0 4.0* -7.9* 3 -7.489 3.19 158.622
1 10.0 -5.9 4 -7.837* 2.98 158.286*
2 12.3 -7.6 5 -7.531 2.92 158.432
3 12.8 -7.1 5 -7.442 3.04 158.365
4e n/a n/a n/a -7.604 3.22 158.316
4g n/a n/a n/a -7.510 3.18 158.342
5 32.4 0.5 8 -7.325 3.16 158.326

MLCS17 0 -78.3* -90.1* 3 -90.354* 2.74 109.436
1 -72.7 -88.3 4 -90.208 3.01 108.989
2 -66.9 -86.5 5 -88.189 3.86 109.079
3 -66.9 -86.5 5 -88.775 3.67 108.977*
4e n/a n/a n/a -89.826 3.24 109.041
4g n/a n/a n/a -89.938 3.18 109.120
5 -49.2 -80.6 8 -89.281 3.48 109.113

Union2 0 -201.3* -214.3* 3 -213.474 3.40 183.869
1 -195.1 -212.3 4 -213.990* 3.12 183.848
2 -189.3 -210.9 5 -212.882 3.56 183.736
3 -189.7 -211.3 5 -212.865 3.64 183.653*
4e n/a n/a n/a -213.754 3.28 183.833
4g n/a n/a n/a -213.808 3.21 183.807
5 -170.4 -204.9 8 -213.436 3.28 183.784
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Figure 2.8: Model 2 fits for the real SNe datasets
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Figure 2.9: Model 3 fits for the real SNe datasets

0.5 1.0 1.5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

w
(z

)

(a) Davis

0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

w
(z

)

(b) Union

0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

w
(z

)

(c) Constitution

0.2 0.4 0.6 0.8 1.0 1.2 1.4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

w
(z

)

(d) MLCS17

0.2 0.4 0.6 0.8 1.0 1.2

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

z

w
(z

)

(e) Union 2

Figure 2.10: Model 4 - GP (α = 1) fits for w(z) using the real SNe data
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Figure 2.11: Model 4- GP (α = 1.9999) fits for w(z) using the real SNe data
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Figure 2.12: Model 5- Hermite basis of polynomials fits for the real SNe datasets
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2.4.2 Conclusions

The mixing in the algorithm is good and has stable MCMC posteriors. Every model

and dataset is within the 95% PI of having the truth be w(z) = −1. This is partly due to

the fact that the 95% PI for most of these models are quite large. Better data quality or

quantity would help to reduce these bands. We need less uncertainty about the cosmological

parameters ∆ and Ωm to better constrain w(z). We gain little to no information about Ωm

through this analysis; the informative prior based on BAO and CMB data is quite similar to

the posterior distribution of Ωm. Ωm cannot be constrained well by supernova data alone;

we need other data sources to shrink its uncertainty and thus the uncertainty assocaited

with dark energy EOS, w(z). We do not comment on the results of ∆ because its meaning

is not fully defined as it is a mixture of H0 and the marginalization during light curve fitting

process which results in an offset parameter M .

Overall, the non-parametric GP fit of w(z) has tighter PIs than some of the para-

metric models, specifically the two parameter models which is also the case in the simulated

data. The GP analysis have w(z) = −1 within the 95% probability but more or better data

is needed to reduce uncertainty or more precise data to draw any firm conclusions about

w(z) = −1.
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Chapter 3

Incorporating CMB and BAO

Data

How does data from other probes constrain Ωm and the dark energy EOS, w(z)?

Can we expect these other probes to decouple these parameters? Previously, we discussed

that Ωm and w(z) have interdependencies that result in multiple solutions. Therefore, these

parameters cannot be constrained by SNe data alone. We were using an informative prior for

Ωm resulting from analysis of other datasets like baryon acoustic oscillation data (BAO) and

cosmic microwave background data (CMB) in the previous chapters: π(Ωm) ∼ N(0.27, .042)

(Hojjati and Pogosian, 2010; Feng et al., 2008). But we wish to include these two probes

directly to the analysis and have a flat prior: π(Ωm) ∼ U(0, 1). By including the two

probes that have different distance-redshift relationships directly to the analysis it should

help constrain the multiple solutions problem. In the previous chapter, we show that the

GP model is the most flexible option while not increasing uncertainty. In this chapter, we

solely focus on the GP model and include more data types to the analysis. Others have

done a joint analysis of SNe, BAO, and CMB for the parametric Model 1 and Model 3
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(Komatsu et al., 2010; Escamilla-Rivera et al., 2011). There is a concern that the two

parameter models presented in Chapter 1 fail to be universal enough to provide coherent

fit for the z domain out to infinity. The CMB is measured at high z values and the BAO

distance-redshift relationship requires an integration with limits on the z domain of infinity.

A joint analysis of SNe, BAO, and CMB probes which each have a different

distance-redshift relation can help constrain the unknowns w(z) and Ωm. The BAO data

is measured at low redshift (z) values similar to that of the supernova data. SNe and BAO

data have many observations between z ∈ (0, 2), which makes for a coherent GP model on

this range. The single CMB observation is at high redshift (z = 1000) which is problematic

for any non-parametric model because that observation is away from the rest. The para-

metric models assume a rigid form for the entire range (0,∞) (parametric models need to

be carefully examined to ensure their form is theoretically appropriate out to infinity and

that they correctly handle the single point at z = 1000). We must make some assumptions

at this point for our model on the range z = (2,∞) where only one observation at z = 1000

is available and because the GP model does not support an integration over (z∗,∞) math-

ematically. We assume the dark energy EOS, w(z), is constant on the range z = (2,∞)

because of the lack of data. Thankfully, the real interest for the time varying form of w(z) is

on the range z = (0, 2) and we use a flexible GP model for this range. This model assumes

the dark energy EOS is continuous on the entire range.

SNe data is only available for low redshift values, so we have been disregarding the

radiation term in the distance-redshift relation. In contrast, the CMB observation is at high

redshift and BAO requires integration up to infinity on the redshift range. The radiation

term (Ωr(1+ z)
4) in the G(z) equation is now quite important; we no longer consider Ωr(z)

to be zero in this chapter. Ωr(z) is the radiation density for photons and neutrinos. We use
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the following formula for Ωr(z) when CMB or BAO is added to the analysis:

Ωr(z) = Ω0r (1 + 0.2271Nefff(mva/Tv0))

= Ω0r



1 + 0.2271Neff

(

1 +

(

0.3173

(

187

1 + z

(

Ω0rh
2

10−3

)))1.83
)1/1.83





where Ω0r = 4.982∗10−5 (from WMAP-7), h = H0/100 Hubble’s constant, and Neff = 3.04

the standard three neutrino species (Komatsu et al., 2010).

We are assuming the three data sources SNe, CMB, and BAO to be independent

of each other, so we can create a separable joint likelihood. SNe data has a variable variance

parameter (σ2) associated with its measures. If we have multiple observations arising from

BAO or CMB, we need to assign them a variable variance parameter as well. Here CMB

has only a single observation so a variance parameter is not necessary, but the simulated

BAO dataset has 20 observations and thus we assign σ2
B as its variable variance parameter.

3.1 Simulated Data

We continue to use the same simulated data for the SNe (n ≈ 2000), which are

observations that are planned to be obtain in the near future (this data was also used in

Chapter 1 and 2 and (Holsclaw et al., 2010b)). Now we include a single simulated CMB

point which is very similar to what is available and twenty simulated BAO data observations

which are similar to data which should be available in the near future. In reality, there is

only one CMB point, two BAO points, and about 557 SNe (Union 2 dataset) observations

currently available to us (see Section 3.5 for a discussion on the currently available data

(Amanullah et al., 2010)). The simulated data is created with the same parameters as the

supernova data (∆ = 0, Ωm = 0.27, σ2 = 1, σ2
B and H0 = 70.4). But the distance-redshift

relation is different for each probe.
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3.2 Cosmic Microwave Background Data

First, we describe the process of adding the one CMB observation to the existing

SNe analysis. The cosmic microwave background data (CMB) comes from the Wilkinson

Microwave Anisotropy Probe (WMAP) (Bennett et al., 2003a,b). The physics of this data is

best understood compared to the other two probes and should shrink the uncertainty of the

estimated parameters. This probe explores very high redshift, many orders of magnitude

higher than any of the other data types discussed. There is a single data point available for

this probe near redshift z = 1000 (we refer to this point as z∗). We include this point by

assuming it is independent to the SNe dataset and using a joint likelihood.

The simulated CMB data point is created with the same parameters as the su-

pernova data (∆ = 0, Ωm = 0.27, σ2 = 1 and H0 = 70.4) but using the CMB equations

relating distance (y∗) and redshift (z∗). We assume that y∗ ∼ N(R(z∗), τ∗2), where R(z∗)

is the transform function given in equation (3.1) and (3.2) and τ2z∗ is the measurement

error associated with the observation y∗ (Wang and Mukherjee, 2007; Elgaroy and Multa-

maki, 2007; Corasaniti and Melchiorri, 2008; Bond et al., 1997). z∗ = 1090.89 and true

R(z∗) = (1.7226, 1.7024, 1.6699) (respectively for µ1 µ2 and µ3) and τ
∗ = 0.019. The sim-

ulated values used for the analysis are y∗ = (1.7361, 1.7158, 1.6834). The relation between

this form of the data is given by:

R(z∗) =
√

Ωm

∫ z∗

0

G(s)ds (3.1)

G(s) =
(

Ωr(s)(1 + s)4 +Ωm(1 + s)3 + (1− Ωr(s)− Ωm)(1 + s)3e−3
∫

s
0

−w(u)
1+u

du
)−1/2

(3.2)

The SNe and CMB data have a joint likelihood taking the form:

L ∝ σ−n exp−1

2

n
∑

i=1

(

µi − T (z)
τiσ

)2

exp−1

2

(

y∗ −R(z∗)
τ∗

)2

H0 and Ω0r are fixed parameters. We have unknown cosmological parameters: Ωm, ∆,

and σ2; which all have flat or non-informative priors in this analysis. Ωm no longer has an
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informative prior based on the CMB and BAO data because that data is being incorporated

directly. The GP has covariance parameters, κ2 and ρ, that have the same priors from

previous analysis of SNe data.

3.3 Baryon Acoustic Oscillation Data

The second probe of interest to add to the SNe analysis is baryon acoustic oscilla-

tion (BAO) data that comes from measurements of clustered baryonic matter or large scale

structure of matter like galaxies. This probe provides a standard ruler for distance measures

that are used in a distance-redshift relationship.

We simulate twenty BAO data points which are similar to what surveys like Big-

BOSS hope to obtain in the near future (Schlegel et al., 2009b,a). Each BAO point has a

redshift value and two associated observed distance measures with estimated error structure

generated from Seo and Eisenstein (2007). We assume that each distance observation for

the BAO observations (y1i and y2i) have correlated bivariate Normal distribution as seen in

equation (3.3) where we assume Ω0b/Ωr = 915.35 and zd = 1020.5; H0 cancels out of these

equations.









y1i

y2i









∼MVN

















DA(zi)/rs

H(zi)rs









, σ2
BK









where K =









σ2
y1i

r12iσy1i
σy2i

r21iσy1i
σy2i

σ2
y2i









(3.3)

H(z) = H0/G(z) (3.4)

DA(z) =
c

1 + z

∫ z

0

G(s)

H0
ds (3.5)

rs =
c

√

(3)

∫ ∞

zd

G(s)

(

H0

√

1 +
3Ωob

4Ωr(1 + z)

)−1

ds (3.6)
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The simulated dataset has twenty BAO points ranging from redshift [0, 2]. The

bi-variate likelihood for the BAO data is:

L ∝
(

1

σB

)2m

exp



− 1

2σ2
B

m
∑

j=1

((

y1j

y2j −
DA(z)/rs

H(z)rs

)′

K−1
j

(

y1j

y2j −
DA(z)/rs

H(z)rs

))





As with the CMB data: H0, Ωr, and Ω0b are fixed parameters and we have unknown

parameters: Ωm, ∆, σ2, and σ2
B with either flat or non-informative priors. The GP has

covariance parameters κ2 and ρ which have somewhat informative priors described in the

SNe analysis.

3.4 Results for Combined Data Sources

The SNe can be combined with BAO, CMB, or both BAO and CMB data in a

joint likelihood; we assume that the different probes are independent. The results of this

analysis are shown in Figures 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 and Table 3.1. The table does

not include σ2 or σ2
B as they are not interesting parameters. σ2 has a 95% PI of (0.92,1.03)

for all datasets.

(a) µ1 (b) µ2 (c) µ3

Figure 3.1: GP Model - SNe
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(a) µ1 (b) µ2 (c) µ3

Figure 3.2: GP Model - SNe+CMB

(a) µ1 (b) µ2 (c) µ3

Figure 3.3: GP Model - SNe+BAO

(a) µ1 (b) µ2 (c) µ3

Figure 3.4: GP Model - SNe+CMB+BAO
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(a) µ1 (b) µ2 (c) µ3

Figure 3.5: GP Model - BAO

(a) µ1 (b) µ2 (c) µ3

Figure 3.6: GP Model - BAO+CMB
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Table 3.1: Model 4 - Simulated Data - Posterior 95% PIs

Data Type Data Ωm ∆ ρ κ2

SNe µ1 (0.23,0.30) (-0.02,0.02) (0.631,0.998) (0.16,0.72)
µ2 (0.21,0.31) (-0.02,0.01) (0.630,0.998) (0.16,0.74)
µ3 (0.26,0.37) (-0.03,0.01) (0.532,0.995) (0.16,0.75)

SNe+CMB µ1 (0.25,0.30) (-0.02,0.02) (0.568,0.997) (0.16,0.73)
µ2 (0.25,0.31) (-0.02,0.01) (0.605,0.999) (0.16,0.72)
µ3 (0.25,0.34) (-0.02,0.02) (0.521,0.972) (0.16,0.88)

SNe+BAO µ1 (0.26,0.28) (-0.02,0.02) (0.510,0.998) (0.16,0.80)
µ2 (0.26,0.28) (-0.02,0.02) (0.612,0.998) (0.16,0.74)
µ3∗ (0.24,0.28) (-0.02,0.02) (0.454,0.934) (0.19,1.04)

SNe+BAO+CMB µ1 (0.26,0.28) (-0.02,0.02) (0.596,0.999) (0.16,0.77)
µ2 (0.26,0.28) (-0.02,0.01) (0.620,0.998) (0.15,0.74)
µ3 (0.26,0.28) (-0.02,0.02) (0.452,0.946) (0.17,0.87)

BAO µ1 (0.22,0.31) n/a (0.549,0.997) (0.16,0.76)
µ2 (0.22,0.30) n/a (0.556,0.997) (0.16,0.76)
µ3 (0.22,0.33) n/a (0.468,0.967) (0.17,0.82)

BAO+CMB µ1 (0.25,0.31) n/a (0.576,0.996) (0.16,0.76)
µ2 (0.25,0.31) n/a (0.564,0.996) (0.16,0.79)
µ3 (0.24,0.32) n/a (0.458,0.976) (0.17,0.87)

In the BAO and BAO+CMB analysis, the fit is a bit wavy but this is due to

only using twenty points unlike the n ≈ 2000 SNe points. We only show one realization

of generated errors in this paper, which also accounts for the waviness. Each realization of

errors would produce a different waviness.

The best fit seems to result from a full combination of SNe, BAO, and CMB.

But adding either BAO or CMB to the SNe data also is an improvement in fit and also in

estimation of Ωm. This is not necessarily expected. In the previous chapters, the prior on

Ωm is informed by CMB and BAO data that was not included in the analysis. Here we add

the CMB and BAO data directly to the likelihood equation and amend the prior on Ωm to

be flat and non-informative. It seems that these two different analysis should yield nearly

the same results but we find that adding either of these data sources directly in with the

SNe data is quite an improvement in most cases over having an informative prior on Ωm.

One thought is that the informative prior on Ωm is too lax as π(Ωm) ∼ N(0.27, 0.042) and

it should have smaller standard error. But another thought is that the other probes have
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different distance-redshift relationships and thus different correlation on the Ωm and w(z)

space, which may reduce the parameter interdependency issues discussed in Section 1.3.4.

Overall, it is best to include all of the data sources directly to the analysis.

3.5 Real Data Analysis

Currently we have available 557 SNe observations (z = (0.015, 1.4)), 2 BAO data

points (z=0.20,0.35), and one CMB data point (z= 1090.79) (Percival et al., 2010; Bond

et al., 1997). We assume a GP model with exponential correlation function on z = (0, 1.4]

and w(z) = const on z = (1.4,∞). The same analysis is performed just as before with

the simulated data but now with a bit of a change to the BAO distance-redshift equation.

Currently, the only measurement for BAO is in terms of: rs(zd)/DV (z) where DV (z) =

(

cz(1 + z)2D2
A(z)/H(z)

)1/3
, whereas in the simulated data there are two correlated distance

measures for each observation.

The real data has observed redshift values and also distance measures with stated

error bars: for CMB z = 1090.79 with R = 1.719+−0.019 and for BAO z = 0.20 with

rs(zd)/DV (z) = 0.1905+−0.0061 and z = 0.35 with rs(zd)/DV (z) = 0.1097+−0.0036 (Percival

et al., 2010). A few of the parameters have slightly different values with the real data than

in the simulated sets: Ωr = 0.00004897, H0 = 70, zd = 1020.3, and Ω0b/Ωr = 914.54. The

priors for ∆, Ωm, σ2, κ, and ρ remain the same.

Table 3.2: Model 4 - Union 2 SNe Dataset - Posterior 95% PIs

Data Type Ωm ∆ σ2 ρ κ2

SNe (0.21,0.35) (-0.03,0.03) (0.88,1.11) (0.567,0.996) (0.16,0.75)
SNe+BAO (0.25,0.35) (-0.03,0.02) (0.87,1.10) (0.541,0.996) (0.16,0.80)
SNe+CMB (0.23,0.32) (-0.03,0.03) (0.87,1.10) (0.532,0.996) (0.16,0.81)

SNe+BAO+CMB (0.25,0.33) (-0.03,0.02) (0.87,1.10) (0.567,0.996) (0.17,0.80)
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(d) SNe+BAO+CMB

Figure 3.7: Real Data - Union 2 SNe data and BAO and CMB data points

Better data quality or more observations are needed for a more certain conclusion

to be made about w(z) and the other cosmological parameters. We present the current

data results here and quickly move on to a discussion in Chapter 4 about what data is most

needed to constrain the dark energy EOS.
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Chapter 4

Experimental Design

Another way w(z) can be further constrained is by improving the quantity and

quality of the supernova or BAO data. Much of the uncertainty reduction is up to the

astronomers, as they work to improve current telescope resolution and shrink the noise

associated with their measures. But statistically, we should be able to answer a foundational

question that bridges the theoretical cosmologist and observational astronomer as to where

more data is needed on the redshift range. This chapter address where more SNe data

should be collected on the z (redshift) axis to best constrain w(z). Typically, uncertainty

is lessened with more observations. These observations are expensive to collect so it is

necessary to target regions. This is not only important to the cosmologist and astronomer,

but also to the decision maker who must allocate resources for new telescopes or purchase

time on existing telescopes.

4.1 Cluster Analysis

The real SNe data that has been collected comes from different telescope surveys,

which tend to collect observations within a certain redshift range. Ground based telescopes
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take measures that are at lower redshift and satellite telescopes like Hubble take measure-

ments that are at higher redshift. We want to see if any clustering methods could pick

up on the differences between these surveys. This may help with the experimental design

question of where additional data is needed or which telescope survey is providing the best

information at constraining w(z).

We first take a dataset, where we have a pretty good idea of the truth of which

SNE come from which telescope survey; namely the Constitution dataset is well documented

in Hicken et al. (2009). SNe have naming conventions resulting from which telescope survey

they come from. This is how we classify the truth and then use cluster analysis to see if we

can recreate the information about which SNE come from which telescope survey.

We have the several output variables from the light curve fitter: z, µ, τ which is

the weight associated with µ, and the year the SNe exploded. Figure 4.1 shows the two way

interaction plots for these four variables. We color each of the four telescope surveys. The

light blue is actually a mix of several ground based surveys; we see they are at low z value.

In earlier years, only ground based observations are available. SNe observations are released

slowly, some of the more recent years may not have all of the data from all of the telescopes

documented yet.

We ran a number of clustering algorithms to discover if any would be able to

find the telescope groupings within the dataset. These types of clustering algorithms are

routinely used for classification. They should partition SNe observations into groupings by

their similarities. All of these clustering algorithms can be found in the mclust library of

R (Fraley and Raftery, 2006). We assume that we know there are four clusters to make for

more precision in the algorithms. In general, none of these algorithms need to know the

number of clusters unless we state otherwise.

One type of clustering algorithm is the agglomerative hierarchical clustering (hc

in R) algorithm (Tan et al., 2006). First, it is hierarchical meaning that it knows about
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Figure 4.1: Two-way plots of the raw data colored by the four telescope surveys
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the sub-clusters as opposed to being just a partitioning algorithm that divides the data

into distinct non-overlapping sets. The hierarchical method has subclusters and views the

cluster structure as a tree plot called a dendrogram. The agglomerative part of the algo-

rithm refers to the fact that it considers each data observation as its own cluster and then

begins grouping them together into larger clusters. This is just the opposite from divisive

hierarchical algorithm which consider the data as one cluster and then create sub-cluster

structure from there. This particular algorithm is based on Gaussian mixture models using

maximum likelihood methods and eigenvalue decomposition (Banfield and Raftery, 1993).

The second broad type of clustering algorithms are also agglomerative hierarchical

tree structures (hclust in R). This type of cluster analysis relies on dissimilarity matrices

or either euclidean or maximum distances. There are a number of methods that fit this

general class; here we examine the results from six of these algorithms: single linkage (MIN),

complete linkage (MAX), group averages, group medians, centroid, and Ward’s minimum

variance method. These terms mostly speak of the way two clusters are related to one

another (Tan et al., 2006). The single linkage (MIN) algorithm looks at all current clusters

of the tree (we begin with each observation being its own cluster at the first level of the tree)

and relates the two closest points in different clusters. These two clusters will be merged in

the next stage. Complete linkage looks at the furthest points in different clusters and merges

the clusters with the smallest maximum distance. Group averages classification looks at all

links of the observations in one cluster with another cluster and computes an average. The

two clusters with smallest average will be merged. Group median is similar but uses the

group median instead of averages. Clusters can be defined by their centroid and these can

be compared in the centroid algorithm. Ward’s method minimizes the distance of points to

their centroid that happens if the two clusters are merged.

K-means clustering is a partitioning algorithm rather than a hierarchical one

(kmeans in R). The K-means method of clustering relies on the centroid of the clusters.
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It tries to minimize the distance each point is to the center of its cluster (Tan et al., 2006).

The number of clusters is set initially and those centroids are set initially and then moved

about until the algorithm has a best fit.

The last type of clustering we use is model based clustering (mclust in R). This fits

many Gaussian mixture models to the data using an EM algorithm and maximum-likelihood

principles (Fraley and Raftery, 2006). Then the optimal model is chosen according to the

BIC model comparison test. This model is best at finding spheres and ellipses of all shapes

and sizes that are Gaussian in nature.

Table 4.1: Success Rate of Classification

Clustering Algorithm z and µ plus τ plus year

Agglomerative hier. 0.607 0.547 0.549
Single linkage 0.572 0.572 0.572

Complete linkage 0.647 0.569 0.587
Group averages 0.652 0.572 0.574
Group medians 0.572 0.574 0.572

Centroid 0.652 0.572 0.572
Ward’s method 0.632 0.642 0.524

K-means 0.594 0.642 0.630
Model based 0.582 0.554 0.531

Now that we have laid out some of the different cluster algorithms, we do data

analysis. We analyze just z and µ first (results displayed in Table 4.1. The results are

a simple proportion of how many of the points are in the correct clusters. Most of the

algorithms seem to cluster about 60% correctly. We add two other variables, τ and Year,

to the analysis and find they do not help the clustering algorithm to distinguish between

telescopes. We also have plots of the cluster analysis in Figure 4.2. Figures 4.2(a) and 4.2(b)

contain the truth. None of these methods seem to perform well and some of the methods

mainly group all of the points in one large cluster.

We find that the telescope survey does not influence the analysis enough to be

needed in the general models. Furthermore, we could not get finalized data about which

telescope each SNe came from and it also seems that some SNe are measured through a
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Figure 4.2: Some two-way plots colored by the four telescope surveys when clustering al-
gorithms are run for z, µ, τ , and Year. The first two plots are of the truth. Each of the
clustering methods is then displayed in two plots.
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mixture of telescopes in some cases. But these results were still of interest to the cosmologists

as another way of viewing the data. And the cluster analysis does not answer where more

data is needed on the redshift range or which telescope survey may be providing the “best”

data for constraining w(z).

4.2 Future Telescope Surveys

Currently, the real data is comprised of several hundred supernova observations.

Each of the telescopes search different depths of space for the supernovae and collect their

results. We explore which redshift ranges give the best information for constraining w(z).

This analysis of redshift range needs to account for any variation in observations as further

objects tend to have larger error bars. Ultimately, we would like to answer which of the pro-

posed surveys is best. These lines of investigation are relevant, as many observers continue

to collect this supernova data and telescopes range widely in cost.

This analysis may help guide the observers to collect the most relevant data that

would be most efficient to the current dark energy research. This type of problem is referred

to as experimental design in statistics. Typical experimental design would specify exact

redshifts to collect data but the Universe probably would not comply with providing a

supernova at that exact redshift location, so instead we alter the standard approach and

allow for a distribution of redshift values as specified by proposed telescope surveys.

As in the previous work, we expect this analysis to be computationally intensive due

to the highly non-linear relationship in this problem. Currently, the method that has been

used to weight different regions of the redshift range is principal component analysis (Huterer

and Starkman, 2003). This requires that w(z) be a piecewise discontinuous function, which

is not coherent with the physics of w(z), and the supernovae are binned according to redshift

to perform this analysis. We move away from those kind of assumptions in our experimental
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design and assume w(z) to be a non-parametric flexible GP that is continuous. We use the

best GP model from Chapter 3, which incorporates SNe, BAO, and CMB data to compare

these different SNe telescope surveys.

There are three proposed future telescope surveys of SNe Type Ia: one ground

based (LSST comprised of DEEP and MAIN) and two different space based missions (two

space missions - JDEM and Wide-Field Infrared Survey Telescope (WFIRST), it would pro-

duce something like the simulated data we presented in Chapter 1) (Bernstein et al., 2009;

Gehrels, 2010, 2011). The ground based surveys produce large numbers of SNe measure-

ments more economically but the space based missions provide higher redshift observations

with less observational uncertainty. We summarize these telescope surveys in Table 4.2

along with the details of the currently available SNe dataset, Union 2.

Table 4.2: Telescope Missions

Current Ground Space 1 Space 2

(Union2) (LSST) (JDEM)

No. of SNe 557 10,000 1,500 2,300
z range 0.015-1.4 0-1.1 0.2 - 1.3 0-1.7

Mean z value 0.35 0.5 0.8 0.8
Error bars 0.08-1.08 0.12-0.16 0.12 0.13

Cost n/a n/a 1 bil n/a
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Figure 4.3: Redshift distributions for the three surveys
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Underlying the different telescope surveys is a fundamental question about the

optimal locations to collect data. This leads us to do an optimal design of experiments

study. Optimality can be defined in many ways and we must first choose an optimality

criteria for this experiment. Alphabetic optimality include criterion such as minimizing the

variance or maximizing the information through a variety of methods: minimize the trace of

the inverse information matrix (A-optimality) or minimize the determinant (D-optimality)

or maximizes the minimum eigenvalue (E-optimality), or minimize the maximum entry in

the diagonal of the hat matrix (G-optimality) or maximize the trace of the information

matrix (T-optimality) and many others (DasGupta, 1995; Boyd and Vandenberghe, 2004).

Some of the alphabetic criterion are to optimize the predictive variance like G-optimality,

I-optimality and V-optimality. All of these methods are straight-forward when considering

a linear model with fixed variance and non-hierarchical priors because they only require

analysis of the design matrix (information matrix) (Chaloner and Verdinelli, 1995). The

methods become increasingly more difficult or impossible if any one of these assumptions is

changed.

We begin by stating the complexity of the problem at hand. The variance term is

estimated. The favored model is a non-parametric infinite dimensional GP, in most cases

its covariance matrix can be optimized by one of many methods (Etman, 1994). But in this

problem, the GP is embedded in a non-linear transform which precludes such a simple op-

timization quantity as the covariance matrix. There can also be other issues because points

tend to be chosen near the boundaries of the problem. The cosmology equation is non-linear

and computationally expensive to perform with its double integration steps. Non-linear re-

gression can have an optimality criterion where one minimizes the information matrix of

the derivatives of the parameters (for D-optimality one would maximize the determinant

of the Fisher information matrix or the parameters and E-optimality would maximize the

minimum eigenvalue) (Berger, 2006; Dette et al., 2004). These methods all require a matrix
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of the derivatives of the parameters (the Fisher matrix), which is complex because of the

integrations inherent in the cosmology model. And this method does not extend well to a

non-parametric model where there is an infinite domain for which the GP is defined. Suffice

to say, no typical methods readily apply to the model of the Universe.

We thought of viewing this problem as multiple hypothesis testing on the p = 55

parameter space of the GP. The hypothesis testing for something as simple as p = 3 where

w(z) = const with point mass priors did not work (Toman, 1996). This is because it requires

something similar to a RJMCMC algorithm with posteriors that did not converge in the

MCMC algorithm. We thought about viewing this as a sequential design where we use the

current Union 2 data, and set priors for Ωm, w(z), and the other parameters based on that

analysis (Muller et al., 2004). But we would like to incorporate the current data with each

of the future surveys in one cohesive model.

4.2.1 SNe Designed Experiments

We propose a computationally expensive alternative that adequately addresses

the issues with other methods. We begin with the Union 2 dataset, which has n = 557

observations (zo, µo); we include the one CMB data point and two BAO points. This

analysis results in the fit for w(z) shown in Figure 3.7(d); the process of fitting this model

under the Bayesian framework and the prior settings are discussed in the preceding chapter.

This results in posterior distributions for ψo=( Ωo
m, ∆o, σ2o, ρo, κ2o, w(zo)) from the GP

model (see Figure 3.7(d)). The posterior distributions for w(zo) is over a grid of fifty redshift

values.

We want to compare the three possible telescope surveys to see which is the best at

constraining the resulting w∗(z). First, we must set a criteria to define what we mean by best

constrains w∗(z) or rather minimizes its uncertainty. We choose a criteria that to minimize

the average variance of w∗(z) over the grid of fifty points. We call the average variance M
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(shown in Eq(4.1)) for each telescope survey and themin(MLSST ,MJDEM ,MSpace2) should

be the best of the three surveys at reducing the uncertainty associated with w(z).

M =
1

∆z

∫ ∫ ∫
V (w(z∗)|z∗, µ∗, zo, µo

, ψ
o
, ψ

∗)p(z∗, µ∗

, ψ
∗|zo, µo

, ψ
o)p(zo, µo

, ψ
o)dµ∗

dz
∗

dz (4.1)

where ψ = (Ωm,∆, σ
2, ρ, κ2), (zo, µo) is the Union 2 observed data, and (z∗, µ∗) is simulated

future data.

A set of values are drawn from the ψ distribution that are used to create new

datasets. We create one hundred datasets in this fashion for each telescope survey. The

distribution for the different z∗ are shown in Figure 4.3 and the values for n∗ are given in

Table 4.2. We draw one hundred simulated datasets using z∗ with n∗ observations. The

values of µ∗ are based on T(z∗, ψo|zo, µo) and a noise term N(0,ǫ2), where ǫ is based on the

values of the error bars in Table 4.2. Next we fit the GP model with parameters w∗(z) and

ψ∗ to the one hundred new combined dataset ((zo, z∗), (µo, µ∗)) using the same priors for

ψ∗ as we did when we fit ψo with the original data(zo,µo).

As an overview, we begin with the real data (zo, µo) and obtain p(w(zo), ψo|zo, µo);

this produces one set of posteriors. The next steps, we perform one hundred times for each

telescope survey. We draw simulated redshift locations z∗ from the distribution, p(z∗), in

Figure 4.3. Next we obtain µ∗|z∗, w(zo), ψo and draw error terms based on the error bars

given in Table 4.2. Finally, we calculate p(w∗(z), ψ∗|z∗, µ∗, zo, µo). We have one hundred

posteriors for w(z) over a grid of fifty points. The variance for each of those 50 points is

saved for each of the 100 different simulated SNe datasets. The mean of all of the variances

is taken over all of the grid points and simulated sets, this gives an average overall variance.

This produces one number for each of the surveys; we take the minimum to choose the best

survey at shrinking the uncertainty associated with w(z). We cannot say that the particular

survey is the best because other factors can be considered through a loss function based on

various costs. We leave that in the hands of the decision makers.
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4.2.2 Results

The average variance of w(z) for the simulated telescope surveys should be smaller

than the average variance of the Union 2 data alone. This is the case for all three of the

future telescope surveys. Union 2 has an initial average posterior, E(V (w(zo))) = 0.019. For

the one hundred simulated predictive datasets for each telescope mission, we obtain results

as seen in Table 4.3. The JDEM mission has the most shrinkage for the average variance for

w(z) thus we would say this is the best mission. But none of the missions are statistically

significantly different from one another in this analysis. And none are significantly different

from the current Union 2 dataset, even though there are more SNe points with much tighter

standard error bars (τ) for each of these three telescope missions.

Table 4.3: Telescope Mission Comparison

E(V (w(zo))) 90% PI

Union 2 0.019 n/a
Ground (LSST) 0.01480± 0.00341 (0.011264,0.022147)
Space 1 (JDEM) 0.01747± 0.00603 (0.011973,0.031743)

Space 2 0.01748± 0.00341 (0.012129,0.024950)

We believe there are two issues that arise when comparing the average variance for

w(z) for these different surveys. Some of the one hundred predictive dataset realizations for

each telescope survey give a wider overall V (w(z)) than the Union2 set alone. Incompatible

values of Ωm and ∆ between the Union2 set and the new predictive dataset could be causing

this phenomenon. Thus there may be too much variation input in the creation of the

predictive datasets. A second issue may also influence the lack of shrinkage of the PI bands

for w(z). In (Holsclaw et al., 2011b), we compare n = 550 data points to n = 2300 data

points and the resulting w(z) is quite similar for the two datasets even though one dataset

is nearly four times larger. We think there may be an issue with saturation of the data;

more data may not give much new information toward the estimation of w(z).

77



Chapter 5

Conclusion

What conclusions can we make about the form of the dark energy EOS? Is w(z)

equal to negative one or with what certainty can we currently estimate w(z)? We may

not currently be able to answer these questions fully. But we have made progress as to

understanding the form of dark energy EOS and its relation to other parameters using

various data sources.

In Chapter 1, we see the favored parametric representations of w(z) are limited

to one and two parameter models. The one parameter model, w(z) = a, has drawbacks in

that it assumes a flat representation of w(z). Ωm and w(z) are interdependent and different

sets of these parameters produce equivalent solutions for the distance-redshift equation. We

show a case (dataset µ3) where the solution chosen by SNe data alone for these parameters

is incorrect. Either a tighter prior on Ωm resulting from BAO and CMB data is necessary

or BAO and CMB data need to be directly included into the analysis. The two parameter

models do not have these issues but they do make strict assumptions about the form of

w(z). Unfortunately, they cannot be extended to include more terms and thus more flexibil-

ity. There is a need for a more flexible model than what the literature has thus far proposed.
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In Chapter 2, the non-parametric GP model and an approximation to that model

using a basis of damped Hermite polynomials are presented. The approximation method has

drawbacks similar to that of the two parameter models. We work with the inherent prop-

erties of the GP to propose a more stable and computationally efficient method that comes

close to having all of the benefits of the approximation method. This is a novel approach

to GP modeling that result in an integrated GP by using the properties of the stochastic

process. The flexible GP model seems to out-perform the two parameter models by reducing

the uncertainty in the estimate of w(z). But w(z) suffers from similar identifiability issues

as some of the parametric models because Ωm is not well constrained by the SNe data or

its current prior.

At this point, we compare all of these models. We find that some of the model

comparison methods being used in the literature are insufficient for this particular second

derivative problem, in particular Bayes factors, AIC, and BIC. The DIC and PPL tests

are used to compare the parametric and non-parametric models to a null hypothesis model

where w(z) = −1. We conclude that there is currently not enough information in the SNe

data to make a firm conclusion about the form of w(z). At this time, we need to address

the interdependencies of w(z) and Ωm that produce the multiple solution. And we need to

examine what additional data is needed to better constrain w(z) = −1.

In Chapter 3, we introduce additional sources of information with different distance-

redshift relationships than that of SNe. We use an informative prior on Ωm in previous

chapters resulting from BAO and CMB data sources. In this section, we trade the infor-

mative prior for a non-informative one and include the BAO and CMB data directly. Both

BAO and CMB data have their own distance-redshift relation, which helps to uncouple

w(z) and Ωm. We conclude that at least one additional data source should be included

with any SNe analysis because it better informs Ωm and helps decouple it from w(z).
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In Chapter 4, we desire to further constrain w(z) than the current 550 SNe obser-

vations, 2 BAO points, and 1 CMB point can do. There are several astronomical surveys

under consideration to collect additional data but they all cost a great deal of resources. We

compare three of the SNe surveys being considered and the BAO survey in an experimental

design. We set an optimality criterion for what it means to reduce uncertainty for the pa-

rameter space and perform the computations. We find that the ground survey provides the

best reduction in uncertainty for w(z) but that it is not statistically significant from other

telescope surveys. We find that there may be a point at which more SNe data may not be

providing further constraint for w(z) because the data is sufficiently saturated.

Overall, the highlights of this work have been in successfully fitting a coherent

non-parametric form to the dark energy EOS, w(z). This alone is a sizable challenge; it

allows for visualization of a time evolution form of dark energy (Holsclaw et al., 2010b,a).

This requires statistical work on an inverse method for GPs when the curve of interest is

a derivative process (Holsclaw et al., 2011a). This non-parametric GP model is further

extended to include three types of data and better constrain Ωm (Holsclaw et al., 2011b).

Finally, we are able to draw on the three sources of data and the non-parametric model

to perform a complex analysis of future astronomical surveys where the goal is to collect

the best data to inform w(z). Because of this work, we have a better understanding of the

properties of the dark energy EOS and direction as to how to better understand it.

5.1 Future Work

There is so much to still discover about dark energy and its equation of state.

Overall, science is still grappling with the issue of dark energies existence. If the suppositions

are correct, we merely have been examining the form of its pressure and density relation.

New data from the current sources will continue to be collected and need analysis to further
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inform about this relation. This analysis in turn could drive the direction of future studies.

We only investigated a handful of future SNe studies. As technology continues to improve

and scientist learn even more there will be other astronomical studies to compare. The

astronomers continue to reduce uncertainty with the measurements and light curve fitting

process.

It would be interesting to look at the light curve fitting process from a statistical

vantage point. It may be possible to incorporate the curve fitting process and modeling

into one joint step. Statistically, it is better to incorporate all information into a unified

model than to use summary statistics and uncertainty measures resulting from a black box

process. Variables like color and shape from light curve fitting process could be incorporated

as well into the analysis and their roles may be better understood. This line of study could

possibly aid the observational astronomer and focusing their efforts at reducing uncertainty

in specific areas. Any reduction in uncertainty should help to better explain the dark energy

EOS.
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Appendix A

GP Model: Details

A.1 Correlation Function Relationships

Assume we have the following relation between y(z) and w(z): y(z) =
∫ z

0
w(u)du

with w(u) ∼ GP (0,Σw = K(u, u′)). We want to show that y(z) is a Gaussian process with

these specific properties: y(z) ∼ GP (0,Σy) with Σy =
∫ z

0

∫ z′

0
K(u, u′)du′du and Σyw =

cov(y(z), w(u)) =
∫ z

0
K(u, u)du (we can obtain Σwy in a similar manner).

The integral of a GP is a GP because integration is approximately a linear operator

(Sarkka, 2011; Rasmussen and Williams, 2006). We also can show that Y is a GP (or follows

a multivariate Normal distribution) because Y =
∫ z

0
w(u)du. w(u) is a GP by assumption

and w is a continuous function of u. This is standard Riemann integration and can be

approximated by the sum: Yn =
∑n−1

k=0 w(uk)∆(u) where Yn → Y and n→∞.
∑n−1

k=0 w(uk)

is simply an n dimensional multivariate Normal. Therefore, each Yn is Normal and this leads

us to conclude that the process y(z) is a GP.

Primarily, the focus is on zero mean GPs. But we want to show the properties of

the a mean function that is non-zero. If E(w(u)) = m(u) then E(y(z)) = E(
∫ z

0
w(u)du) =

∫ z

0
E(w(u))du =

∫ z

0
m(u)du (we use Fubini’s Theorem to exchange the expectation and the
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limits of integration.)

Finally, we look at the properties of the covariance function of y(z). We begin with

the following definitions: V (w(u)) = cov(w(u), w(u)) = K(u, u) and cov(w(u), w(u′)) =

E(w(u)w(u′)) = K(u, u′) where K(u, u′) could be any correlation function; we mostly have

been using the powered exponential correlation family. These definitions lead to the follow-

ing:

Σy = cov(y(z), y(z′))

= cov(

∫ z

0

w(u)du,

∫ z′

0

w(u′)du′)

= E(

∫ z

0

w(u)du

∫ z′

0

w(u′)du′)

= E(

∫ z

0

∫ z′

0

w(u′)w(u)du′du)

=

∫ z

0

∫ z′

0

E(w(u′)w(u))du′du by Fubini’s Thm

=

∫ z

0

∫ z′

0

K(u, u′)du′du

Σyw = cov(y(z), w(u′))

= cov(

∫ z

0

w(u)du,w(u′))

= E(

∫ z

0

w(u)duw(u′))

= E(

∫ z

0

w(u′)w(u)du)

=

∫ z

0

E(w(u′)w(u))du by Fubini’s Thm

=

∫ z

0

K(u, u′)du

We use Fubini’s Theorem in these proofs but it requires that the function inside

the integral have certain properties. The probability density function (pdf) satisfies these

conditions because the expectation is always greater or equal to zero, as is the correlation
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function K(u, u′). In general, with f(z, z′) being the pdf for the expectation we now show

the properties of Fubini’s Theorem in full detail:

E(y(z)y(z′)) =

∫ ∞

−∞

∫ ∞

−∞
f(z, z′)y(z)y(z′)dz′dz

=

∫ ∞

−∞

∫ ∞

−∞
f(z, z′)

(

∫ z

0

w(u)du

∫ z′

0

w(u′)du′
)

dz′dz

=

∫ ∞

−∞

∫ ∞

−∞

∫ z

0

∫ z′

0

f(z, z′)w(u)w(u′)du′dudz′dz

=

∫ z

0

∫ z′

0

∫ ∞

−∞

∫ ∞

−∞
f(z, z′)w(u)w(u′)dz′dzdu′du

=

∫ z

0

∫ z′

0

E(w(u), w(u′))du′du

=

∫ z

0

∫ z′

0

K(u, u′)du′du

f(z, z′)w(u)w(u′) ≥ 0 thus fulfilling Fubini’s theorem and allowing the reordering of inte-

gration.

A.2 Integration of Correlation Functions

We use the Chebyshev-Gauss quadrature method for solving the single integral

of the correlation function. K(s, s′) =
∫ s′

0
ρ|u−s|α

(1+u) du is the integral equation used in the

correlation matrix and it cannot be solved analytically. Additionally, there is no good

approximation because the limits of integration do not go between 0 and infinity. Numerical

methods are a must and Chebyshev-Gauss quadrature provides a good alternative to other

forms of slower numerical integration (R uses Gauss-Kronrod quadrature).

First, we must change the limits of integration from [0, s′] to [−1, 1] to be able to

use this form of quadrature thus using the rule:
∫ b

a
f(x)dx = b−a

2

∫ 1

−1
f
(

(b−a)x
2 + a+b

2

)

dx.

Chebyshev-Gauss quadrature uses Chebyshev polynomials of the first kind as its orthogonal

polynomials, 1√
1−x2

. In total, one integral is approximated as:
∫ 1

−1
f(x)√
1−x2

dx ∼∑n
i=1 γif(xi),

xi = cos
(

(2i−1)π
2n

)

, and γi =
π
n . We let: ui = cos

(

(2i−1)π
2n

)

, and n = 100 where the weights
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are constant and fully specified. The single integral in equation (A.1) is equivalent to

equation (A.2) which can be directly implemented into the GP algorithm.

K(s, s′) =

∫ s′

0

ρ|u−s|α

(1 + u)
du =

s′

2

∫ 1

−1

ρ|
s′u
2 + s′

2 −s|α

(1 + s′u
2 + s′

2 )

√

1− u2 1√
1− u2

du (A.1)

K(s, s′) =
s′

2

n
∑

i=1

γi

√

1− u2i
(1 + s′ui

2 + s′

2 )
ρ|

s′ui
2 + s′

2 −s|α (A.2)

A.3 Localize Search Algorithm

There are numerical issues when using a GP model embedded in a highly non-linear

transformation. Usually, a GP results in closed form posterior distributions that can easily

be sampled from with Gibbs steps in an MCMC algorithm. But we have a GP model with

n grid points that all must be sampled at every iteration through slow Metropolis steps in

the MCMC algorithm. This step with n proposed points of the GP tends to have a high

rejection level in the algorithm. To reduce the rejection level, the likelihood is transformed

into an equivalent state that allows for smaller steps between the previous values. This can

be thought of as a more localized search algorithm on the GP space.

A GP is defined by its mean and correlation functions: w(z) ∼ GP (θ,Σρ,κ2). The

likelihood function resulting from the non-linear cosmology equations leads to the following

posterior: σ2, ρ, κ2|µi, τ
2
i , zi ∝ L(zi, µi, τi|w(z), σ2)GP (w(z)|ρ, κ2)π(ρ)π(κ2)π(σ2). Instead

of the usual GP prior just described, we alter the form to allow for a more localized search.

We let w(z) ∼ MVN(θ,Σ) and Σ−1/2(w(z) − θ) = wo(z) ∼ MVN(0, I). So the posterior

becomes: L(zi, µi, τi|wo(z), ρ, κ2, σ2)MVN(wo(z); 0, I)π(ρ)π(κ2)π(σ2).
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A.4 GP Algorithm for the Inverse Method

We thought the complete GP algorithm should appear somewhere to help clarify all

of the complex steps. The algorithm contains all of the priors, the localized search method,

and various methods of integration previously discussed.

1. Initialize all variables: ρ = ρ1, κ
2 = κ21, and w

o(u) = wo
m,1(u). w(u) is a vector of m

GP points and y(s) is a GP with mh points. We run this algorithm q = 1, ..., Q times

and the tuning parameters, δ1,2,3, need to be tuned until good mixing occurs. The

variance parameters σ2 and κ2 must be greater than zero and ρ is in the range (0, 1),

any proposals that do not fit these criterion are rejected. All proposals are symmetric

and do not need jumping functions.

2. Propose ρ∗ = Unif(ρq − δ1, ρq + δ1)

(a) Compute the covariance matrix K22ρ∗ = ρ∗|uj−ui|α

(b) Compute the Cholesky decomposition for K22ρ∗ = U ′
ρ∗Uρ∗

(c) Compute the special K12ρ∗ =
∫ s′

0
ρ∗|u−s|α

1+u du

(d) We want yρ∗(s) = θ ln(1 + s) + [κ2q−1K12∗][κ2q−1K
−1
22∗](wρ∗(u)− θ)

where: wρ∗(u) = [κq−1U
′
ρ∗ ]wo

m,q−1 + θ

yρ∗(s) = θ ln(1 + s) + [κ2q−1K12∗][κ
2
q−1K22∗]

−1(
(

κq−1U
′
ρ∗wo

m,q−1 + θ
)

− θ)

= θ ln(1 + s) + κq−1K12∗[(U
′
ρ∗Uρ∗)−1U ′

ρ∗ ]wo
m,q−1

= θ ln(1 + s) + κq−1K12∗[U
−1
ρ∗ ]wo

m,q−1

(e) L(zi, µi, τi|wρ∗ , σ2
q−1) = e

− 1
2

∑

(

µi−T (zi,wρ∗ (u))

τiσi

)2

where the definite integrations

in T (zi, wρ∗(u)) are done numerically through summations of the trapezoid algo-

rithm.

(f) If we accept αMH =
Lρ∗π(ρ

∗)

Lρq−1
π(ρq−1)

then we let ρq = ρ∗
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3. Draw κ2∗ = Unif(κ2q−1 − δ2, κ2q−1 + δ2)

(a) Compute yκ2∗(s) = θ ln(1 + s) + κ∗K12ρq
[U−1

ρq−1
]wo

m,q−1

(b) L(zi, µi, τi|wκ2∗ , σ2
q−1) = e

− 1
2

∑

(

µi−T (zi,wκ2∗ (u))

τiσi

)2

where the definite integrations

in T (zi, wκ2∗(u)) are done numerically through summations of the trapezoid al-

gorithm

(c) If we accept αMH =
Lκ2∗π(κ

2∗)

L
κ2
q−1

π(κ2
q−1)

then we let κ2q = κ2∗

4. Propose a non-standard w∗
m as the GP. Start by drawing a proposal for wo∗ ∼

MVN(wo
q−1, δ3Imxm)

(a) Compute y∗(s) = θ ln(1 + s) + κqK12q[U
−1
q ]wo∗

m,

(b) Lzi,µi,τi|w∗
new(u),σ2

q−1
= e

− 1
2

∑ µi−T (zi,w
∗
new(u))

τiσ

2

(c) If we accept αMH =
Lw∗

new(u)MVN(wo∗
m |0,I)

Lwq−1
MVN(wm,q−1|0,I) then w

o
m,q(u) = wo∗

m (u) and the Gaus-

sian process realization is wm,q(u) = w∗
m(u)

5. σ2
q |... ∼ IG

(

n
2 ,

1
2

∑

(

µi−T (z|...)
τi

)2
)

6. Repeat steps 2-6, Q times and rerun the entire algorithm as needed after resetting the

tuning parameters.

A.5 MCMC Issues

MCMC issues continually arise for this cosmology application as the complexity

of the non-linear transform make parameter uncertainty estimation difficult. There is the

possibility of closed form posterior distributions for two specific parameters: σ2 and ∆. But

Ωm and the parameters that comprise w(z) do not have closed form posterior distributions,

thus making sampling from them troublesome. Many additional issues arise for the typical

MCMC sampling procedures. In the simple cases, where w(z) has a parametric form, the
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standard non-linear regression methodology works. But here the parameters tend to be

correlated to one another, so we adopt joint proposal distributions for the parameters. The

convergence and stability of the posterior chains are greatly improved with this method.

In standard methods, the hyper-parameters in the correlation function of the GP

typically do not have closed form posterior distributions but the GP itself does. In this cos-

mology application, the GP does not have a closed from posterior, leading to slow sampling

of the posterior chain. We implement a localize search algorithm to aid with the mixing

and convergence of the posterior chains. The acceptance rates for the proposals of the GP

points are still lower than usual, closer to 10% than 30%. All GP points are sampled in

a joint step, the two correlation parameters are sampled in their own joint step, as are ∆

and Ωm. This algorithm poses many issues with computational efficiency that we discuss

in Chapter 2. Additionally, the grid points of the GP algorithm also control the speed and

accuracy of the results of the integration steps. We do not use an evenly spaced grid over

the GP domain. We have more grid points near zero on the z axis because the integrations

are performed from zero to zi for every point, i = 1...n.

Issues arise when sampling from the posteriors without closed form. Hypothesis

testing, for whether w(z) is equal to negative one, poses the same issues with mixing and

convergence. We assume point mass priors for the parameters of w(z) in this method.

It requires a type of reversible jump MCMC (RJMCMC) algorithm. But the posterior

distributions we obtain are linked to the proposal distribution. The percentage of time

the posterior stays in the point mass is dependent on the proposals tuning parameter. In

most cases, convergence is not properly obtained, so we abandon this method altogether

and do not display results. The literature on Bayesian hypothesis testing using point mass

priors, seems to only address cases where closed form posteriors are available and proposal

distributions are unnecessary. Instead, we pursue model comparison methods and use a null

hypothesis model for hypothesis testing.

88



A.6 Correlation Parameter

There are several ways of representing the correlation parameter in the exponential

family: K(u, u′) = ρ|u−u′|α . We have chosen this parameterization with ρ but to better

understand the properties of this parameter. But it may be worthwhile to look at other

common parameterizations like: ρ = exp(−λ) = exp(−1/d). We examine in Figure A.1 two

possible priors for ρ and the induced priors on λ and d. The first is a flat prior for ρ, which

corresponds to the IG(1,1), d then has a mode of one half and undefined mean and variance.

The second is an informative prior for ρ of (Beta(6,1)) that emphasizes smoothness of the

GP, which corresponds to IG(1,6) prior on d. We choose this second prior because the

exponential correlation function is quite jagged and we want to impose some smoothness

through the hyper-parameter prior.
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(a) π(ρ) ∼ U(0, 1)
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(b) π(λ) ∼ Exp(1)
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(c) π(d) ∼ IG(1, 1)
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(d) π(ρ) ∼ Be(6, 1)
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(e) π(λ) ∼ Exp(6)
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(f) π(d) ∼ IG(1, 6)

Figure A.1: Examining different parameterizations of the correlation parameter
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The parameter d is of interest because it best explains the range of correlation

function; the rest of the discussion is in terms of d and not ρ. It makes sense to discuss the

modes of these prior distributions (expect for the U(0,1)) because they are skew and the

mean is not defined in all cases (the IG distribution used here does not have a defined mean

or variance). The first option of prior for d has a mode of one half and the second has a

mode of three.

We use the definition of practical range to be when the correlation is equal to

0.05 and this range depends on both d and α (Diggle and Ribeiro, 2007). The redshift

data ranges from 0 to about 1.7; some may want the practical range (correlation lengths)

within these values. For the exponential correlation function (α = 1) the practical range

is approximately 3d, for the Gaussian correlation function (α = 2) it is
√
3d and for the

Matérn(ν = 1.5) it is 4.75d. The prior d ∼ IG(1, 1) has a mode of 0.5 which has a practical

range very near 1.7 but the resulting GP on w(z) is far too rough. We use the second prior

and the correlation is 0.72 at redshift 1.7; this prior implies that the data on the whole

observed spectrum is highly related.

Two things we assume from the physics of the problem: first w(z) is completely

continuous and second it is rather smooth (no sudden changes). The GP is assumed to be

continuous (because of the choice of correlation function) and fully defined at every point

on the redshift range. The smoothness of the GP must also be inferred in the choice of

correlation function (or in other words the value of the α parameter for the exponential

family or ν for the Matérn) and the prior on d. Even though, the distributional form of the

prior on d is identical for the exponential and Gaussian correlation functions, its practical

range is different. When we have a Gaussian correlation, we continue to use the same prior

but now the practical range is smaller, about
√
3d instead of 3d. The Gaussian correlation

is infinite differentiability and very smooth, so relaxing the practical range makes sense.
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We show the difference between two priors for ρ and the resulting w(z) fits in

Figure A.2. The Uniform prior on ρ produces a fit for w(z) that is jagged and does not

hold to the physics of the problem. This results in much wider bands on w(z) because the

initial assumptions of smoothness are missing. In Figure A.3, we plot the prior and posterior

distribution for ρ for these two different prior assumptions. The prior greatly effects the

posterior. The other thing to note is when we have a flat prior on ρ there is still a tendency

toward high values for ρ near one. It is not just our informative prior that tends towards

high correlation lengths. Overall, we use the informative prior with additional smoothness

assumptions and the many simulated data examples show that it performs quite well.
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Figure A.2: Model 4 fits of w(z) for dataset µ1 for different priors on ρ
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Figure A.3: The black line is the posterior density of ρ and red line is the prior density
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